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Abstract

Natural and anthropogenic aerosols over northern India play an important role in influencing
the regional radiation budget, causing climate implications to the overall hydrological cycle of
South Asia. In the context of regional climate change and air quality, we discuss aerosol
loading variability and trends at Kanpur AERONET station located in the central part of the
Indo-Gangetic plains (IGP), during the last decade (2001-10). Ground-based radiometric
measurements show an overall increase in column-integrated aerosol optical depth (AOD) on a
yearly basis. This upward trend is mainly due to a sustained increase in the seasonal/monthly
averaged AOD during the winter (Dec—Feb) and post-monsoon (Oct—Nov) seasons (dominated
by anthropogenic emissions). In contrast, a neutral to weak declining trend is observed during
late pre-monsoon (Mar-May) and monsoon (Jun—Sep) months, mainly influenced by
inter-annual variations of dust outbreaks. A general decrease in coarse-mode aerosols
associated with variable dust activity is observed, whereas the statistically significant
increasing post-monsoon/winter AOD is reflected in a shift of the columnar size distribution
towards relatively larger particles in the accumulation mode. Overall, the present study
provides an insight into the pronounced seasonal behavior in aerosol loading trends and, in
general, is in agreement with that associating the findings with those recently reported by
satellite observations (MODIS and MISR) over northern India. Our results further suggest that
anthropogenic emissions (due mainly to fossil-fuel and biomass combustion) over the IGP
have continued to increase in the last decade.

Keywords: aerosol optical depth, trend, AERONET, Kanpur, Indo-Gangetic plains
Online supplementary data available from stacks.iop.org/ERL/7/024003/mmedia

1. Introduction and seasonally changed airmass patterns. The Indo-Gangetic

plains (IGP), in the northern part of India, are among
Aerosols over India exhibit strong seasonal and inter-annual the most densely populated as well as the most heavily
variability mainly driven by the regional monsoon system aerosol-laden regions of the world. With the increase in
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population density and energy demands, aerosol emissions
have been gradually increasing, mainly through fossil-fuel
and bio-fuel combustions (Lawrence and Lelieveld 2010).
The large increase in anthropogenic aerosols over IGP
is hypothesized to cause considerable changes to regional
monsoonal climate (Ramanathan et al 2005, Lau er al
2006, Dey and Tripathi 2008, Gautam et al 2010). The two
main contrasting seasons over northern India (winter and
pre-monsoon/summer), in terms of boundary-layer dynamics
and wind patterns, dictate variations in aerosol type and
their spatial, temporal and vertical distribution. During the
relatively stable winter season, the area is often covered
by a low lying thick fog/hazy layer (Gautam et al 2007).
The aerosols are mainly of anthropogenic origin due to
large carbonaceous and sulfate emissions from fossil-fuel
and bio-fuel combustions (Prasad er al 2006). In contrast,
the IGP experiences an enhanced convective and turbulent
boundary layer and witnesses a large influx of westerly wind
driven dust-laden air masses during the pre-monsoon/summer
season (April-June) (Gautam et al 2011). This period also
marks the development and evolution of the monsoon type
circulation over the Indian subcontinent. The onset of the
monsoon season typically sees a significant reduction in the
dust-laden aerosols associated with heavy and continuous
rainfall (Singh er al 2004) and by the end of the monsoon
season, northwestern IGP is influenced by aerosols due to
extensive crop-residue burning (Sharma ez al 2010).

Numerous studies using satellite observations and
ground-based measurements have revealed an overall increase
in aerosol optical depth (AOD) over India especially in
IGP (Satheesh et al 2002, Massie et al 2004, Sarkar
et al 2006, Porch et al 2007, Prasad and Singh 2007a,
Lawrence and Lelieveld 2010, Dey and Di Girolamo 2011,
Kaskaoutis et al 2011, Kharol et al 2011, Ramachandran et al
2012). Systematic aerosol observations via the well-calibrated
AERONET instruments have played a vital role in the
determination of the increase of anthropogenic aerosols,
especially in developing countries (Yoon ef al 2011, Xia 2011,
Wang et al 2011).

Kanpur AERONET station, in the central part of the
IGP, has been operational since January 2001 (Singh et al
2004) and, for the first time, we present monthly long-term
(2001-10) trend analyses of spectral AOD measurements.
We have analyzed the 10 year period and also two
5 year sub-periods, (i) 2001-5 and (ii) recent, 2006-10,
independently in view of the statistically changing aerosol
properties. The Angstrom exponents at different spectral
bands are also analyzed in order to understand the trends
associated with anthropogenic or natural processes and are
discussed with respect to the modification of the columnar
aerosol size distribution. In addition to the analysis of the
aerosol loading trend over Kanpur for a 10 year period, the
present work also supplements the satellite (MODIS, MISR)
derived trends of AOD over IGP during the last decade.

2. Data and methodology

The intense haze and smog conditions over the IGP during the
winter season, firstly observed by the ADEOS Polder satellite

(Goloub et al 2001) as a blanket of heavy aerosol layer
over the area, motivated the Indian Institute of Technology
(IIT) Kanpur and NASA/GSFC to establish the first long-term
AERONET station in India at Kanpur (26.5°N, 80.2°E) in
2001 (Singh et al 2004). During the last decade, several
studies have dealt with aerosols over Kanpur focusing on
aerosol type classification (Gobbi et al 2007, Eck et al
2010, Giles et al 2011), model simulations (Chin et al
2009) and satellite validation (Tripathi er al 2005, Jethva
et al 2007, Prasad and Singh 2007a). Direct-beam and
sun/sky almucantar radiance measurements using a CIMEL
sunphotometer provide column-integrated spectral AODs at
eight wavelengths, from 340 to 1640 nm, and water vapor
content at 940 nm (Holben et al 1998). Furthermore, via
the almucantar measurements and the spectral deconvolution
algorithm (SDA) retrievals, aerosol columnar size distribution
(CSD), single scattering albedo (SSA), asymmetry parameter,
refractive index, fine and coarse-mode AQODs are also
available for large solar zenith angles (>50°) and high aerosol
loading conditions (AOD440 > 0.4) (Dubovik et al 2000). The
Level 2 (cloud screened and quality assured) AERONET data
were used in the present work, following the uncertainties
in the retrievals described elsewhere (Giles et al 2011). The
aerosol properties were daily averaged and analyzed on a
monthly and seasonal basis during the period January 2001
to December 2010.

Since aerosols over India are composed of both natural
and anthropogenic components during different seasons, we
also analyze the respective trends of fine and coarse particles
by examining the variability in Angstrom exponents (c)
defined at shorter (380-500 nm) and longer (675-870 nm)
wavelengths. According to Reid et al (1999), Schuster et al
(2006), the former is indicative of the aerosol fine-mode
size, while the latter provides useful information about the
coarse-to-fine mode ratio. Thus, supplementary to AODsqg
and a440—g70, direct-sun retrievals of a3go_s00 and wg75-870
are used for the trend analysis over Kanpur during 2001-10.
AERONET almucantar retrievals are not used for analyzing
trends in this study due to limited observations available,
especially during the monsoon season, and to avoid potential
bias in linear regression type analysis.

For all the available data series (AODsgg, 440-870,
Q380—500, ®675—870), linear regression analysis was applied
during the period 2001-10 using the monthly mean values.
In addition to the monthly means, median-based analysis
is a potential way to avoid outliers/skewed data, especially
for those months with limited sample size. Therefore, linear
regressions were also calculated using the monthly median
values. If there is not much sampling/outlier bias then trends
from both the median and mean methodologies would be
close and not deviate significantly. With the usage of the
median-based analysis, sampling and outlier biases were
minimized, which help us to make the analysis more robust.
Moreover, the trends in aerosol properties are analyzed on a
monthly basis during the period 2001-10 using the daily mean
AERONET retrievals. The percentage (%) variation in aerosol
properties is calculated via the formula: x(%) = aN/x100,
where x is the variable, a is the slope value from the linear
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Figure 1. Inter-annual variability and trend of the AODs daily values over Kanpur for 2001-10. The slope of the regression analysis along
with the % difference and the P value are given (black for AODsq, green for « (440-870), blue for o (380-500) and red for « (675-870).)

regression analysis and N the whole number of days, months
or years during the studied period, i.e. with and without data.
For each case the statistical significance of the slope was
checked by applying the P value, i.e. P < 0.05 for statistically
significant variations at the 95% confidence level.

3. Results and discussion
3.1. Trend analysis from 2001 to 2010

Figure 1 shows the AODsq trends using the daily mean values
for the period 2001-10. Due to the presence of clouds and
the calibration protocol, aerosol observations are not equally
distributed within the months and years, and a large gap
in data from December 2006 to February 2007 and from
June 2007 to November 2007 exists. Furthermore, during the
monsoon rainy season (June—September) there are limited
observations that present large year-to-year fluctuations due
to monsoon onset, intensity and duration (Gautam et al
2009). In order to perform a robust statistical analysis,
all available measurements during the examined period are
considered (including gaps in observations). In figure 1,
the slope values from the regression analysis are provided
corresponding to variation per day along with % difference
and statistical significance tests indicated by p values, as
described in section 2. The data series in figure 1 exhibit
large day-to-day and seasonal variability in AODsqg, which is
strongly influenced by the local and regional meteorological
and atmospheric conditions, i.e. rainfall, air mass trajectories,
aerosol emission rates, etc (Singh et al 2004). Especially over
India, the role of rainfall in aerosol properties and variations
is crucial during the monsoon season (Gautam et al 2009,
Manoj et al 2011). On the other hand, the increase in aerosol
loading over northern India may also affect precipitation and
the hydrological cycle (Lau ef al 2006). However, it is difficult
to quantify the influence of rainfall in AOD trends over
Kanpur, since anthropogenic emissions and dust transport
play a significant role in influencing aerosol loading and
properties, especially during the extended dry period, i.e. from
October to June over northern India. For example, the deficit
of rainfall during monsoon of 2002 and late pre-monsoon

of 2003 caused an increase in dust activity and atmospheric
aerosol lifetime over northern India (Kaskaoutis et al 2011)
and high AODjsq values (figure 1).

The results show overall increasing trends in AODjsgg
(7.69%) and w440—g70 (5.52%), which are found to
be higher (13.8% and 18.1%, respectively) during the
second half-period (2006-10), that are consistent with
satellite observations (MODIS, MISR) of increasing
AOD and enhanced anthropogenic emissions over IGP
(Dey and Di Girolamo 2011, Kaskaoutis et al 2011). The
increase of 7.69% in AODsgo during the period 2001-10 is
considered as statistically significant at the 95% confidence
level (p < 0.05), in contrast to the change in Angstrom
exponents. However, the observed trends and % variations
are sensitive on the basis of daily, monthly or yearly data.
Averaging the aerosol properties over a monthly period has
the disadvantage of limited observations during some specific
months that may influence the monthly mean and, in turn,
introduce biases in trends. On the other hand, the monthly
median values are a good way to avoid outliers/skewed data,
especially for months with insufficient datasets. Thus, the
trend analysis is also attempted on a monthly and yearly
basis using the mean and median values. The results are
summarized in table 1, excluding the year 2007, due to lack of
data for the majority of the months (figure 1). On a monthly
and yearly basis, the AOD5( increase is found to be slightly
higher (~9-10%) compared to daily values, while similarly to
the daily trends, the monthly and yearly ones are positive for
a400—870 and negative for « at shorter and longer wavelengths
(except for a3g0—s500 for monthly and yearly median values).
Overall, the results (figure 1, table 1) show a concurrent
increase in both AOD500 and o449—g70, suggesting an increase
in anthropogenic aerosols over Kanpur, although the trends in
all Angstrom exponents are not statistically significant at the
95% confidence level. The consistency of the trends obtained
using the mean or median values (table 1), with differences in
the variations in the order of 1-5%, suggests that the datasets
used for analyzing the aerosol trends provide reliable results
despite the lack of data during specific months. The similar
trends from both the median- and mean-based approaches
suggest that the sampling/outlier bias in the monthly values
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Table 1. Trend values and (%) variation of aerosol properties over Kanpur during the period 2001-10 using the yearly mean/median and

the monthly mean/median values.

Yearly mean trends

Yearly median trends

Monthly mean trends Monthly median trends

Trend/year (%) Trend/year (%) Trend/month (%) Trend/month (%)
AOD 0.0062 10.12 0.0055 9.24 0.00053 10.29 0.000 46 9.35
00440870 0.0036 3.89 0.0057 5.98 0.00052 6.93 0.000 62 797
380500 —0.0045 —5.32 0.00009 0.11  —0.00006 —0.91 0.000 06 0.86
0675870 —0.0091 —-9.43  —0.0065 —6.81 —0.00042 —5.07 —0.00026 —3.35

Table 2. Statistical parameters for the regression analysis in the monthly time series of the examined aerosol properties. The statistically
significant trends at the 95% confidence level are presented in bold italic. (N: number of available days for each month)

Trend/day (%) P N Trend/day (%) P N Trend/day (%) P N
January February March
AOD 0.00004 (1.81) 0.876 155 0.000 19 (11.28) 0.536 196 0.000 34 (23.79) 0.002 206
00440—870 —0.00011 (—2.64) 0.595 —0.00022 (—5.45) 0.356 —0.00030 (—11.03)  0.189
0/380—500 —0.000 18 (—5.85) 0.319 —0.00029 (—8.25)  0.052 —0.00042 (—14.83) 0.016
o675-870 —0.00036 (—7.79) 0.127 —0.00021 (-5.25)  0.507 —0.00019 (—7.89) 0.449
April May June
AOD 0.00048 (26.33) 0.005 211 —0.00065(—26.9) <0.001 224 —0.00021 (—8.08) 0.518 187
00440—870 —0.00021 (—12.54)  0.279 0.0011 (72.67) <0.0001 0.00031 (20.54) 0.264
0380500 —0.00016 (—=7.79) 0.457 0.001 2 (65.35) <0.0001 0.00033 (18.01) 0.206
o675-870 —0.00036 (—25.14) 0.035 0.000 66 (50.68) 0.001 —0.00046 (—32.03) 0.138
July August September
AOD —0.00055 (—27.59) 0.099 99 0.000 055 (2.83) 0.852 101 —0.000006 (—0.36) 0.978 129
0440—870 0.0017 (67.86) <0.0001 0.00003 (1.03) 0.943 0.00078 (22.61) 0.003
00380—500 0.0012 (50.25) <0.001 —0.00029 (—10.9) 0.284 0.000016 (0.49) 0.928
675-870 0.00107 (44.51) 0.015 —0.00105 (-35.8) 0.071 0.00011 (3.07) 0.791
October November December
AOD 0.000026 (1.29) 0.889 208 0.00063 (24.60) 0.005 211 0.00049 (21.06) 0.039 168
0440870 0.000 14 (3.62) 0.435 0.00026 (5.98) 0.001 0.000 18 (4.26) 0.146
00380—500 0.000 089 (2.70) 0.429 —0.00045 (—14.1) <0.0001 —0.00032 (110.35) 0.023
675870 —0.00065 (—15.61) 0.014 0.00022 (4.51) 0.061 0.000 15 (3.13) 0.324

is not significant and, therefore, the trend analysis is more
robust.

The trends in the AOD and o values for each month
during the period 2001-10 are further examined using the
daily AERONET observations and the results are summarized
in table 2. The period from May to October exhibits
mostly neutral to negative trends in AODsqgg; there is a
statistically significant decrease (—26.9%) in AODsgy during
May associated with a pronounced positive trends in all o
values. Furthermore, significant increases in « values (p <
0.05) are observed in July associated with a considerable
(—27.6%) decrease in AODsqy, although they are not
statistically significant due to large temporal variation and
limited number of observations due to cloudiness. The main
cause for these downward trends during May—July can be
attributed to the extreme values of high AODsgpy and low «
associated with frequent and intense dust activity during 2002
(monsoon) and 2003 (late pre-monsoon) (see the peaks in
figure 1), in turn influencing the aerosol trends during the
whole decade (Kaskaoutis et al 2012). On the other hand,
a statistically significant increase in AODsgy is observed
in March (23.8%), April (26.3%), November (24.6%) and

December (21.1%) associated with a decrease in o449-870
during the pre-monsoon months and an increase for late
post-monsoon and winter, respectively. The negative trends
in « suggest an increase in natural coarse-mode aerosols,
whereas an increasing trend is associated with the increase in
fine anthropogenic emissions (a statistically significant trend
in a440-g870 is observed only for November). It should also
be noted that a statistically significant decrease in «3g9—500 1S
found for March, November and December, thus suggesting
a shift of the CSD to a larger fine-mode radius indicative
of gas-to-particle conversion and coagulation processes. In
contrast, and opposite to the satellite observations of large
increase in anthropogenic AODs over IGP during winter (Dey
and Di Girolamo 2011), January and February exhibit rather
neutral AODs( trends over Kanpur and slight negative trends
in o values.

The AOD trends from MODIS and MISR data also
exhibited strong monthly variability over northern India
(Dey and Di Girolamo 2011, Kaskaoutis et al 2011).
Regarding the consistency of the monthly trends between
AERONET, MODIS and MISR only a qualitative comparison
can be provided since the non-overlapping periods in the
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Table 3. Statistical parameters from the comparison of the aerosol optical properties over Kanpur AERONET between the sub-periods
2001-5 (group 1) and 2006—10 (group 2). The mean values of AODsqg, 2440870, ®380—500 and ae75—870 are given for each month and group.
N is the number of daily observations for each group, while 7 and P values correspond to the statistical variables of the two-pair ¢-test. The
statistically significant differences (95% confidence level) between the two groups are highlighted in bold italic, while the differences that
are in the limits of the statistical significance at the same level are presented in italic.

Janl Jan2 t P Feb 1 Feb 2 t P Mar1 Mar2 t P
N 82 73 113 83 107 99
AOD 0.697 0.673 —0.46 0.64 0.463 0.491 0.89 0.38 0424  0.463 1.77  0.08
Q440—870 1.306  1.275 —-0.81 042 1.149 1.121 —-0.67 0.50 0.854 0832 —-049 0.62
a380—500 0.963  0.942 —-0.66 051 1.017 0956 —222 0.03 0901 0.852 —141 0.16
A675-870 1479 1381 —-230 0.02 1.149 1.101 —-0.85 0.39 0.759 0.732 -0.56 0.57
Apr1 Apr2 t P May 1 May 2 T P Jun 1 Jun 2 t P
N 107 104 99 125 97 90
AOD 0.518 0.577 1.92  0.056 0.777 0.723 —-1.57 0.12 0.828 0.727 —-1.63 0.10
0(440-870 0.487 0.518 091 0.36 0.351 0.563 556 <0.001 0428 0479 098 0.33
a380—500 0.593 0.640 127  0.21 0.603 0.711 3.07 0.002 0519 0.582 1.27 0.21
0675-870 0.432 0428 —-0.13 0.89 0.326 0.465 385 <0.001 0470 0388 —1.40 0.16
Jul 1 Jul 2 t P Augl Aug2 T P Sep 1 Sep 2 t P
N 61 38 54 47 74 55
AOD 0.658  0.553 —1.46 0.15 0.536  0.561 047 0.64 0.489  0.509 046 0.64
0440—870 0.641 0995 392 <0.001 0.861 0.944 1.00 0.32 0993  1.091 1.78  0.07
Q380—500 0.651 0.884 3.60 <0.001 0834 0.815 —-0.34 0.73 0.964  0.968 0.11 091
a675-870 0.659 0.883 2.39 0.02 0.966  0.845 —-1.02 031 1.105 1.035 —-0.84 040
Octl  Oct2 t P Novl Nov2 T P Dec1 Dec2 t P
N 133 50 129 82 112 56
AOD 0.646  0.588 —1.61 0.11 0.691 0.890 509 <0.001 0689 0.784 1.96 0.051
0440—870 1.205 1.189 —-0.47 0.64 1287 1332 3.03 0.002 1.298  1.332 135 0.18
0380500 1.007  1.047 1.78 0.08 1.009 0.884 -7.09 <0001 0978 0917 211 0.04
A675-870 1.359 1.169 -376 <0.001 1434 1514 375 <0.001 1474  1.507 1.14  0.26

two data series, the coarse (1° x 1° for MODIS and
0.5° x 0.5° for MISR) Level 3 spatial resolution over
Kanpur and the unequal distribution of the observations
during a month cause difficulties in deriving a quantitative
comparison. Despite these difficulties, the AERONET data
(using monthly mean/median values) show positive trends in
late post-monsoon and winter months and neutral or even
negative AODsq trends during the period May—October that
are found to be consistent with MODIS and MISR retrievals.
A higher spatial resolution of Level 2 (10 km x 10 km) satellite
data over Kanpur may be more valid for examining the trends
over the site, but such a quantitative comparison is beyond the
scope of the present work.

3.2. Comparison of sub-periods (2001-5 and 2006-10)

Since there are gaps in daily data, especially during monsoon
and winter seasons, statistical significance tests (#-test) of the
changes in the monthly mean values of aerosol properties
between the two sub-periods (2001-5 and 2006-10) are
applied and the results are summarized in table 3. In this
approach, the variations and trends in aerosol properties are
grouped into mean values and are therefore smoothed. Thus,
statistically significant increase of AODsgy during 2006—10 is
observed only for November, while the increase in AOD5qg
in December and April is at the limits of the statistical
significance at the 95% confidence level (p values close

to 0.05). Consistent with the results of table 2, there is a
significant increase from the first period to the second in all
« values in May and July and a decrease or small change of
AODs(y during May—October. The results of tables 2 and 3
are, in general, similar and statistically significant changes can
be emphasized for AODsgp and « values during November,
which indicate an increase in anthropogenic component,
whereas those observed in May and July suggest a decrease
in natural aerosols from 2001-5 to 2006-10.

The same approach of grouping aerosol observations in
the two sub-periods is applied for the four dominant seasons
and the results are summarized in figure 2 (view of box charts,
details are given in the figure caption). The boxes show the
range of the 25% and 75% values of the observations, the
mean value (square) and the median value (line), as well as
the 1% and 99% and minimum and maximum values. Using
the #-test for independent groups at the 95% confidence level,
the statistically significant changes in the mean values for
AODs( and alpha are examined for two contrasting periods:
2001-5 and 2006-10.

In winter, the second period exhibits slightly higher
AODjs0 (0.631 against 0.608) and slightly lower o449—g70 and
a675—870 values without statistically significant differences.
In contrast, a statistically significant difference is revealed
for a3g0—s500 with lower values during 2006-10, suggesting
an increase in particle size of fine aerosols (Reid er al
1999, Schuster et al 2006). A pronounced shift towards
larger values for the fine-mode radius and an increase in
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Figure 2. Box charts for AODs (black), o (440-870) (green), o (380-500) (blue) and o (675-870) (red) for Kanpur AERONET data
(2001-5) (bold boxes) and 2006—10. The statistically significant differences between the means of the two periods are defined with the filled
patterns. The number of observations for each group (N; for 2001-5 and N, for 2006-10) is also provided.

the accumulation-mode fraction is observed (figure 3(a)),
which is consistent with the decrease in a3g9_500. A decrease
in the dV/dInR is also noted for the coarse mode around
4 pm during 2006-10, which can partly offset the increase
in the coarse mode for the radius range 0.8-2.0 um. The
combination of these two results in the small difference in
a675—870 values between the two periods. These modifications
in the CSD curves have negligible effect in a440—870 as also
shown by Eck et al (2005).

In the pre-monsoon season (figure 2(b)) the contrasting
results of March, April and May (tables 2 and 3) lead to
a small and not statistically significant increase in AODj5y.
During the pre-monsoon as well as the monsoon season,
much larger variation in all o values is found compared
to the homogeneous anthropogenic-aerosol-laden atmosphere
during post-monsoon and winter. Regarding changes in
a440—870 and a3gp—s00, Statistically significant increases are
observed in the second period strongly influenced by the
considerable differences observed in May (tables 2 and 3).
In contrast, the opposite trends in ag75-870 between the
pre-monsoon months (tables 2 and 3) result in smoothing
the differences in this parameter. During pre-monsoon a
pronounced decrease in the fine-mode aerosols (figure 3(b))
is observed during 2001-5, whereas an increase of the
dV/dInR is observed for the coarse mode during 2006-10.
The concurrent increase in dV/dInR for both fine and
coarse modes during 200610 indicates a slight increase in
AODsgg (figure 2(b)). According to Reid et al (1999) a
similar increase in fine and coarse modes causes much larger

variation in o« at shorter and mid-wavelengths than at the
longer wavelengths and so the statistically significant increase
in a380—500 and o440—g70 (figure 2(b)). The contrasting AOD
and alpha trends in the pre-monsoon months (tables 2 and
3) are clearly detected by the CSDs in these months during
the two sub-periods (see supplementary figure 1 available
at stacks.iop.org/ERL/7/024003/mmedia). More specifically,
the CSDs in March and April reveal a larger coarse-mode
fraction and dominance of coarser aerosols during 2006—10
leading to lower « values. In contrast, the coarse-mode
fraction dominates the CSD in May during the first sub-period
(2001-5), thus affecting the « values in all wavelength ranges
(statistically significant increase in « during 2001-10) (see
table 2). This is attributed to the enhanced presence of dust
aerosols and frequent dust outbreaks over Kanpur during May
2003 (Prasad and Singh 2007b, Kaskaoutis e al 2012).
During the monsoon period (figure 2(c)), the only
statistically significant difference is that for ou49_g70 it
increased during 2006—-10. The seasonal differences during
monsoon are mainly influenced by the July values (tables 2
and 3), while the decrease in AODjs in June and July is partly
recovered by the increase in August and September (table 3).
The CSD curves in the two sub-periods are similar except
for the larger coarse-mode fraction in the first period that
leads to the lower ca40—g70 (figure 3(c)). Finally, the variations
in aerosol properties during post-monsoon (figure 2(d)) are
similar to those in winter with statistically significant increase
in AODjs influenced by the large increasing November trend.
The strong decrease in «3g0—500 in November modulates the
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Figure 3. Mean seasonal CSDs at Kanpur AERONET station during the periods 2001-5 and 2006—10. The number of CSD retrievals for
each period is given on each graph. The vertical bars correspond to the standard error from the seasonal mean.

seasonal variation, while the contradictory results in «g75-870
for October and November smooth the differences between
the two periods. The changes in CSD during post-monsoon
(figure 3(d)) are similar to those observed in winter, thus
introducing similar results regarding the changes in the
aerosol parameters. The increase in fine-mode radius and
the associated shift towards accumulation mode are both
highlighted, leading to a decrease in «3g9—500. The analysis
showed that the differences in the size distribution curves in all
seasons are not statistically significant at the 95% confidence
level. It is to be noted that the apparent difference between the
changes in the three Angstrom exponent values is attributed to
the curvature in the spectral AOD in the log—log plot (Eck et al
1999) suggesting different values of « and, hence, different
trends for each spectral band.

4. Conclusions

The present work examined the variation and trends in
aerosol optical properties at Kanpur AERONET site in
northern India during the last decade (2001-10). Linear
regression analysis along with statistical significance tests
were applied for examining robustness of the trends in the
daily and monthly averaged aerosol data record. Significant
variations in the AOD and Angstrom exponent trends
were observed depending on the month and season. In
general, the AODsy increased significantly during the

November—-December period as well as in the months of
March and April. In contrast, a neutral or slight decreasing
trend during May—October was found, which is attributed to
large inter-annual variations of AOD, particularly associated
with dust loading during May-July for the years 2002 and
2003; this is in agreement with satellite (MODIS, MISR)
observations and model (GOCART) simulations over the
region (Dey and Di Girolamo 2011, Kaskaoutis et al 2011).
Large changes in a440—g70 were not observed, except from
an overall slight increase, indicating a larger contribution of
anthropogenic aerosols. Recently, Lu ez al (2011) also showed
significant increases in sulfate and carbonaceous aerosol
emissions from India associated with the remarkable energy
consumption growth. The respective trends in « defined at
shorter and longer wavelengths were associated with changes
in columnar aerosol size distribution, mostly exhibiting a
shift towards a larger fine radius and accumulation-mode
fraction during post-monsoon and winter, thus corroborating
the increase in fine-mode aerosol concentrations during the
extended dry period. It is to be noted that despite the fact
that the presented CSDs can satisfactorily explain the aerosol
differences between the two sub-periods, there are serious
difficulties for a direct comparison between figures 2 and
3, mainly due to larger uncertainties (Dubovik er al 2000)
and the much smaller number of almucantar retrievals for
each period, which may not be equally distributed on all
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days of each season. Overall, this study confirms the seasonal
dependency in the aerosol loading trends, recently reported
by satellite observations (MODIS and MISR) over northern
India, and further provides an in depth assessment based on
columnar particle size variations from monthly decomposition
of the observed trends.
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