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ABSTRACT: Exposure to ambient fine particulate matter
(PM2.5) is a leading risk factor for the global burden of disease.
However, uncertainty remains about PM2.5 sources. We use a
global chemical transport model (GEOS-Chem) simulation
for 2014, constrained by satellite-based estimates of PM2.5 to
interpret globally dispersed PM2.5 mass and composition measure-
ments from the ground-based surface particulate matter network
(SPARTAN). Measured site mean PM2.5 composition varies
substantially for secondary inorganic aerosols (2.4−19.7 μg/m3),
mineral dust (1.9−14.7 μg/m3), residual/organic matter (2.1−
40.2 μg/m3), and black carbon (1.0−7.3 μg/m3). Interpretation
of these measurements with the GEOS-Chem model yields
insight into sources affecting each site. Globally, combustion
sectors such as residential energy use (7.9 μg/m3), industry (6.5 μg/m3), and power generation (5.6 μg/m3) are leading sources
of outdoor global population-weighted PM2.5 concentrations. Global population-weighted organic mass is driven by the
residential energy sector (64%) whereas population-weighted secondary inorganic concentrations arise primarily from industry
(33%) and power generation (32%). Simulation-measurement biases for ammonium nitrate and dust identify uncertainty in
agricultural and crustal sources. Interpretation of initial PM2.5 mass and composition measurements from SPARTAN with the
GEOS-Chem model constrained by satellite-based PM2.5 provides insight into sources and processes that influence the global
spatial variation in PM2.5 composition.

■ INTRODUCTION
Exposure to ambient fine particulate matter (PM2.5; aerody-
namic diameter of 2.5 μm or less) is a leading risk factor for
increased mortality and morbidity.1,2 The Global Burden of
Disease study attributed 4.1 million premature deaths to PM2.5
exposure in 2016.3 A strong need exists to understand the
sources contributing to this PM2.5 burden to inform mitigation
efforts.4 PM2.5 formation is influenced by a range of emission
sources, atmospheric transport, and atmospheric chemistry.5

A chemical transport model constrained by observations offers a
powerful tool to understand these sources. Until recently, long-
term measurements of PM2.5 mass and chemical composition
were primarily limited to North America and Europe, with
different networks using a variety of sampling techniques and
standards to determine chemical composition. A global data set
of ground-based PM2.5 compositional measurements could offer
valuable information to understand the sources and processes
that control the spatial diversity of PM2.5 mass and chemical
composition.
The relationship between emissions and PM2.5 loading is

complex. PM2.5 can be emitted directly as particles from com-
bustion ormechanical processes, but it can also form and grow in
the atmosphere through the condensation of low volatility
products of atmospheric chemical reactions of inorganic and
organic precursors.5,6 Chemical transport models have been
applied to represent this complexity through source apportion-
ment studies aimed at characterizing the global sources
contributing to PM2.5 mass and composition,7 with increasingly
fine resolution.8 Although insightful, simulations could benefit
from stronger observational constraints to evaluate and improve
accuracy and spatial representativeness.
Two observational data sets have emerged recently with

information about the global distribution of PM2.5 mass and
composition, a dedicated ground-based network of PM2.5
composition, and increasingly accurate satellite-based estimates
of PM2.5 mass. The surface particulate matter network
(SPARTAN) measures ground-based PM2.5 mass and chemical
composition using consistent instrumentation and standardized
chemical analysis techniques in diverse global locations with
high population densities relevant for health. Measurements
from SPARTAN include PM2.5 filter samples that are analyzed

for PM2.5 mass and chemical composition including sulfate,
nitrate, ammonium, black carbon (BC), crustal material, and sea
salt.9,10 Satellite-based estimates of PM2.5 mass complement the
ground-based measurement network by offering additional
global constraints on PM2.5 mass at a resolution finer than global
simulations. Case studies investigating the effects of model
resolution on calculated PM2.5 mortality rates find that those
calculated from coarse (2° × 2.5°) resolution are systematically
lower than those calculated using finer (e.g., 0.5° × 0.66°)
resolution.8,11,12 The latest global satellite-based PM2.5 estimates
combine observations from multiple retrieval algorithms13−19

and instruments (MODIS, MISR, SeaWiFs) weighted inversely
by error with respect to ground-based AODmeasurements from
AERONET20 with additional statistical constraints from
ground-based PM2.5 measurements.21−23

We apply the GEOS-Chem global chemical transport model,
constrained by satellite-derived PM2.5, to interpret ground-based
measurements of PM2.5 mass and composition from SPARTAN
to gain insight into the main sources determining the spatial
distribution of PM2.5 mass and composition. We explore the
annual average influence of major emission source categories on
global population-weighted PM2.5.

■ METHODS
SPARTAN Filter Measurements and Analysis. SPAR-

TAN is an ongoing, long-term project that measures aerosol
mass, water-soluble ions, trace elements, and aerosol optical
properties at globally dispersed, densely populated areas of
relevance to human health. Snider et al.10 provide an overview of
SPARTAN. Instrumentation includes an AirPhoton 3-wave-
length integrating nephelometer and an AirPhoton SS4i filter
sampler. We focus on the latter here. The PM2.5 is collected on a
preweighed PTFE filter (2 μm pore size, SKC). Filters sample
one diurnal cycle over a 9-day period beginning and ending at
09:00 local time before shipment under ambient conditions to
Dalhousie University for analysis in a central laboratory. Samples
have been collected for periods of 2 months to over 3 years
during 2013−2017 at 11 carefully chosen, regionally diverse
sites. Although initially sparse, SPARTAN is unique in covering
poorly sampled regions of the world with a consistent
methodology.
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An extensive overview of the SPARTAN PM2.5 sampling
methodology, filter chemical analysis protocols, and the filter-
based hygroscopicity parameter, κ, are provided by Snider et al.9

Details on relevant SPARTAN chemical analysis procedures and
the uncertainty associated with each major chemical component
based on collocated measurements is presented in the
Supporting Information (SI). Seasonal mean uncertainties
range from 4.0% for sulfate, to 4.6% for PM2.5, to 9.2% for
nitrate. Briefly, gravimetric analysis follows USEPA protocols in
a cleanroom with controlled temperature at 20−23 °C and
relative humidity (RH) at 35 ± 5%. Black carbon content is
estimated by surface reflectance measurements,24 water-soluble
ions are determined by ion chromatography,25 and trace
elements are determined by inductively coupled plasma-mass
spectrometry.25,26 The residual matter (RM) component,
estimated by subtracting the dry inorganic mass and particle-
bound water from total PM2.5 mass, is expected to be
predominately organic.9 Activities are ongoing to directly
measure organics through aerosol mass spectrometry27 and
Fourier transform infrared (FT-IR) spectroscopy.28

GEOS-Chem Simulation. We use the GEOS-Chem
3-dimensional chemical transport model (v11.01, http://geos-
chem.org) to determine the daily distribution of PM2.5 major
chemical component mass concentrations. GEOS-Chem solves
for the evolution of atmospheric aerosols and gases using assimi-
lated meteorology from the NASA Goddard Earth Observing
System (GEOS), global and regional emission inventories, and
algorithms that represent the physics and chemistry of
atmospheric processes. The simulation uses assimilated
meteorological observations (GEOS MERRA-2) at 2° × 2.5°
horizontal resolution with 47 vertical levels for the year 2014 for
overlap with SPARTAN and due to emissions availability. The
simulation uses anthropogenic emissions from the Emissions
Database for Global Atmospheric Research (EDGAR) version
4.3 inventory29 and the MIX regional anthropogenic emission
inventory for 29 Asian regions and countries.30

SPARTAN measurements are used to inform developments
to the simulation. We include the anthropogenic fugitive, com-
bustion, and industrial dust (AFCID) emission inventory from
Philip et al.,31 which increased correlation (r) with SPARTAN
fine dust concentrations in this study from 0.35 to 0.67. Simu-
lated total PM2.5 mass concentration is calculated at 35% RH for
consistency with PM2.5 measurement protocols. The calculation
employs the kappa hygroscopicity formulation32 used by
SPARTAN, as described by Snider et al.;9 this formulation
exhibits hygroscopic growth consistent with the aerosol
inorganic model (AIM)33 and laboratory measurements.9

Compared to the default GEOS-Chem model, the kappa
hygroscopicity formulation decreases the bias (reduced major
axis slope) of simulated PM2.5 versus SPARTAN PM2.5
concentrations from 1.39 to 1.29. We also include an aqueous-
phase mechanism for secondary organic aerosol (SOA) forma-
tion from isoprene from Marais et al.34 that better represents
SPARTAN PM2.5 mass as shown by reduced root-mean-square-
error from 14.2 to 13.3 μg/m3. We perform sensitivity
simulations for which emissions from individual source
categories were removed to calculate the contribution of sources
to PM2.5 mass and composition by mass balance. Further details
about the simulation are provided in the Supporting Information.
Constraining the Simulation with Satellite-Based

PM2.5. Satellite observations of AOD offer an additional con-
straint on the global PM2.5 distribution at spatial scales com-
mensurate with population density distributions.35 To reduce

uncertainties in PM2.5 exposure estimates caused by model
resolution,8,36 satellite-derived PM2.5 concentrations21 for the
year 2014 are used to downscale GEOS-Chem PM2.5 mass and
composition from 2° × 2.5° to 0.1° × 0.1° resolution following a
widely used approach.36−42 The spatial map of the annual ratio
of satellite-derived to simulated PM2.5 concentration is applied
to all simulated PM2.5 components, thus retaining the simulated
fraction and temporal variation of PM2.5 composition.
Supplemental Table S2 shows the Pearson’s correlation

coefficient between SPARTAN measurements and PM2.5
components from the simulation (r) and simulated values
scaled by local satellite-derived PM2.5 (rsat). For most PM2.5
components, downscaling to satellite-derived PM2.5 increases
the consistency in capturing PM2.5 spatial diversity. Correlations
tend to increase, most notably for organic mass (OM, rsat =
0.92 vs r = 0.64) as well as total PM2.5 mass (rsat = 0.93 vs r =
0.88), ammonium (rsat = 0.86 vs r = 0.81), and BC (rsat = 0.67 vs
r = 0.61). The root-mean-square-error of simulated total PM2.5
decreased from 13.3 μg/m3 to 12.8 μg/m3. Prior work has
similarly found that the downscaled simulation better represents
observations for both mass and composition.36,41 Therefore, all
values of total PM2.5 mass and chemical composition reported
herein are from the downscaled simulation (scaled by the local
annual ratio of PM2.5,sat to PM2.5,model) at 0.1° × 0.1° resolution.

Sources Affecting PM2.5 Mass and Composition.Global
Distribution of PM2.5 Chemical Composition. Figure 1 shows
the annual mean simulated PM2.5 chemical composition with
overlaid concentric circles depicting concentrations at SPAR-
TAN sites. The center of each concentric circle indicates the
measured value, with corresponding downscaled simulated
concentration indicated by the outer ring. Differences between
the outer ring and background map represent the effects of
sampling the simulation for the same months as the measure-
ments versus complete annual sampling. These seasonal
sampling effects are generally much smaller than the global
spatial variation, providing evidence of temporal representative-
ness. Inset values represent the global population-weighted
mean concentration inferred from the downscaled simulation.
Table 1 contains numerical values of measured and simulated
concentrations for the specified sampling periods of SPARTAN
sampling sites. The spatial variation of SPARTAN site-mean
concentrations exceeds a factor of 5 (e.g., Kanpur, India vs Buenos
Aires, Argentina) for most PM2.5 major chemical components, as
described in more detail in the following sections.
SPARTAN measurements of secondary inorganic aerosol

(SIA) vary by a factor of 8 across sampling sites from 2.4 μg/m3

in Ilorin, Nigeria, to 19.7 μg/m3 in Beijing, China, and account
for over 20% of total PM2.5 mass at sampling sites, exceptManila,
Philippines (16%) and Ilorin (15%). The downscaled simulation
captures the spatial heterogeneity of SIA concentrations (r= 0.87).
SIA tends to be overestimated at SPARTAN sites, including an
overestimate of nitrate concentrations in Beijing, as discussed
below. SIA dominates population-weighted PM2.5, accounting
for 37% globally.
Measured concentrations of crustal material (dust) vary by

an order of magnitude from <2 μg/m3 (e.g., Buenos Aires) to
3−5 μg/m3 in many cities (e.g., Ilorin and Rehovot, Israel), to
over 5 μg/m3 (Dhaka, Bangladesh; Hanoi, Vietnam; and
Kanpur), and exceed 14 μg/m3 in Beijing. Enhanced dust
mass in Rehovot and Ilorin is expected to be predominately
mineral dust, due to influence from the surrounding arid region.
However, pronounced dust in urban cities throughout the South
and Southeast Asia cannot be fully explained by mineral dust
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sources; elevated measured Zn:Al ratios at these sites9 suggest
an anthropogenic component. The remaining positive bias in
simulated values is driven by an overestimate in the simulated
mineral dust source. Simulated dust concentrations are primarily
mineral over the arid and semiarid regions of North Africa, the
Middle East, and Central Asia, primarily AFCID in urban areas
of Southeast Asia, and a combination of the two in Beijing. Dust
contributes 29% to global population-weighted mean PM2.5
concentrations, making it the second largest global PM2.5
contributor.
As discussed in the methods, SPARTAN does not yet directly

measure organic aerosol content; rather, the inferred residual
matter (RM) is expected to be mainly organic, based on com-
parison with independent organic measurements.9 SPARTAN
RM concentrations are highest throughout Asia where values
exceeding 10 μg/m3 are observed at all SPARTAN sites except
Manila and Singapore. The lowest RMconcentrations are found in
Buenos Aires (2.1 μg/m3) and Rehovot (2.7 μg/m3). The broad
consistency in spatial variation of SPARTAN RM and simulated
OM (r = 0.92) provides supporting evidence that SPARTAN
RM is dominated by organics. Simulated OM is enhanced over
broad regions of South Asia, East Asia, and tropical Africa. Prior
work has found that OM is a leading global PM2.5 chemical com-
ponent for mean concentrations41 and trends.36 We similarly
find that OM continues to play a major role in population-
weighted PM2.5, following SIA and dust to contribute 28%.
Sulfate accounts for over 50% of SIA at all sampling sites,

except Buenos Aires (46%), and accounts for approximately

6.5 μg/m3 of population-weighted PM2.5 concentrations.
SPARTAN measurements of sulfate concentrations exceed
5 μg/m3 at most sites in South and East Asia, in contrast with
concentrations less than 2 μg/m3 in Buenos Aires and Ilorin.
The simulation generally captures the spatial distribution of
measured sulfate concentrations (r = 0.78). Observations from
the OMI satellite instrument have drawn attention to the
pronounced SO2 concentrations from coal combustion in East
and South Asia,43 and sensitivity simulations have shown the
influence of coal burning to the large PM2.5 burden over China.

40

The simulation reveals the spatial scale of the sulfate
enhancement associated with these SO2 sources. Modest
measured enhancements are found in Rehovot, with associated
regional scale enhancements across the Middle East. McLinden
et al.44 found evidence of missing SO2 sources in theMiddle East
that could contribute to the regional sulfate burden. Low simulated
concentrations across North America and Europe reflect the
success of SO2 emission controls over recent decades.45−48

The spatial pattern of measured ammonium concentrations
largely follows that of measured sulfate (r = 0.96) and nitrate (r =
0.93), associated with the formation of ammonium sulfate,
ammonium bisulfate, and ammonium nitrate. Ammonium
contributes less than 10% to measured PM2.5 concentrations
with a population-weighted mean concentration of 3.0 μg/m3.
IASI satellite observations have revealed pronounced NH3
enhancements across East and South Asia,49,50 from agricultural
systems.51 Simulated ammonium concentrations are signifi-
cantly correlated with measurements (r = 0.86), although

Figure 1. Global simulated annual mean PM2.5 composition. Values from SPARTAN observations are overlaid as colored circles surrounded by
concentric circles showing simulated values sampled for consistent months. Concentrations are shown at 35% relative humidity. Abbreviations are
secondary inorganic aerosol (SIA), organic mass (OM; residual mass from SPARTAN), black carbon (BC), and sea salt (SS). Inset values indicate
global population-weighted average PM2.5 concentration resulting from each chemical component. Gray denotes water.
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overestimated. Possible explanations of this overestimation
include measurement artifacts, errors in thermodynamic predic-
tions, and incomplete aerosol neutralization by organic inhibi-
tion of ammonia uptake not represented in the simulation,52,53

as discussed further below and in the Supporting Information.
The degree of spatial variation in measured nitrate reflects the

availability of nitric acid and excess ammonia to form
ammonium nitrate. The highest measured concentrations are
observed in Beijing (4.9 μg/m3), Kanpur (3.8 μg/m3), and
Hanoi (3.7 μg/m3), whereas the lowest are in Ilorin and
Singapore (0.2 μg/m3). The simulation generally reproduces the
distribution of measured concentrations (r = 0.85); however,
simulated concentrations are biased high in Beijing, Kanpur, and
Dhaka where stronger agricultural ammonia sources exist. These
discrepancies may reflect processes related to thermodynamic
equilibrium between the gas and particle phase, aerosol
neutralization as discussed in the Supporting Information, and
uncertainty in NH3 emissions.54 It is also possible that semi-
volatile ammonium nitrate is lost from the filters despite the
SPARTAN sampling procedure design to limit loss of semi-
volatile species such as ammonium nitrate,10 and despite evi-
dence of statistically insignificant trends in PM2.5 and ammonium
nitrate mass when comparing the mass collected on the first
sampled filter (54-day residence time in instrument) and the last
filter sampled (negligible residence time).9 The simulated
population-weighted mean nitrate concentration of 2.4 μg/m3,
driven by elevated concentrations in East Asia, South Asia, and
Europe, may be overestimated.
BC concentrations vary by a factor of 7 across SPARTAN

sites, with concentrations exceeding 5μg/m3 inBeijing (7.3μg/m3),
Dhaka (5.8 μg/m3), and Kanpur (5.6 μg/m3) and as low as
1.0 μg/m3 in Ilorin. The GEOS-Chem simulation reveals the
regional nature of the BC enhancements from a variety of com-
bustion sources in East China and the Indo-Gangetic Plain. The
downscaled simulation generally captures the BC concen-
trations at most SPARTAN sites (r = 0.67), suggesting skill in
capturing the heterogeneous sources of this primary PM2.5
component at the global scale. Population-weighted mean BC
concentration is an order of magnitude lower than SIA at 4%.
Sea salt concentrations are low in both the measurements and

simulation, yielding a contribution to population-weighted PM2.5
of less than 2%.

SPARTAN Site Characteristics. SPARTAN composition
measurements also offer insight into the site-specific source
attribution from sensitivity simulations. The downscaled
simulation generally captures the global spatial heterogeneity
of major chemical components measured by SPARTAN as
summarized in Table S2. Below, we use sensitivity simulations as
described in the SI to further interpret SPARTAN measure-
ments of PM2.5 mass and chemical composition to understand
sources in regions traditionally underrepresented by measure-
ments of PM2.5 components. Source categories selected
for investigation follow those of Lelieveld et al.7 as described
in Table S3. The presentation is grouped by region, the left
column of all Figures S3−S8 shows measured PM2.5
composition at the indicated SPARTAN site. The simulated
chemical composition summed across all source sectors
(Sens. Sim.) can exceed the downscaled simulated chemical
composition (Sim.) due to nonlinearity in aerosol processes,
primarily affecting nitrate, ammonium, and SOA. The agri-
cultural source is most strongly influenced by this process and is
likely overestimated both here and in other studies that exclude
specific sources.T
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East Asia. Figure S3 shows the measured PM2.5 composition
and source attribution at two SPARTAN sites located in East
Asia: Hanoi, Vietnam and Beijing, China. Measured PM2.5
composition is dominated by RM (likely OM), followed by
dust and sulfate. Residential energy use dominates the OM
component of PM2.5 through the burning of solid fuels for
domestic cooking, space heating, and industrial purposes.55

Bonjour et al.56 estimate approximately 50% of the 2010
population in Vietnam and China burned solid fuels for
domestic use. Open fires and other sources also contribute to
OM in Hanoi due to transport of seasonal biomass burning
plumes from Southeast Asia and the oxidation of biogenic
volatile organic compounds (VOCs). SPARTANmeasurements
indicate that dust accounts for 22% of PM2.5 in Beijing and 17%
inHanoi. In Beijing we find contributions from bothmineral and
anthropogenic dust, consistent with prior work.9,31,57 Simulated
dust concentrations in Hanoi are driven by urban sources and
underestimate the observations. Sulfate concentrations are
influenced primarily by emissions from industry and power
generation. Numerous studies have reported that decreasing
SO2 emissions from power generation in East Asia are being
partially offset by rising SO2 emissions from industrial
activity.55,58,59 Ma et al.40 estimate that coal combustion con-
tributes to 40% of the total PM2.5 in Chinese cities. Ammonium
concentrations are mostly from agricultural NH3 and affected by
formation with sulfate and nitrate. Agricultural activity has the
largest impact on nitrate concentrations due to the limiting role
that ammonia can play in ammonium nitrate formation.6,60,61

The positive bias in simulated nitrate and ammonium in Beijing
could reflect loss of semivolatile species from measurements,
errors in simulated thermodynamic partitioning, or missing
processes.53,62 The bias is exacerbated by the sensitivity
simulations due to nonlinear chemistry, when excluding specific
sources, likely leading to an overestimate of the role of agri-
culture. Hanoi exhibits a minor increase in OM when emissions
from agriculture are removed due to increased aerosol acidity, as
this ammonia source neutralizes acidic components. Industrial
sources of NOx (NO + NO2) also contribute to nitrate
formation in East Asia.50,61 BC has two primary source
categories: residential energy and industrial activity; the negative
bias could reflect heterogeneity of this primary source. Overall,
each of the investigated source categories are active in East Asia
and contribute to the complex PM2.5 mixture measured by
SPARTAN.
South Asia. Figure S4 shows the measured PM2.5 com-

position and source attribution at two SPARTAN sites located
in South Asia: Kanpur, India, and Dhaka, Bangladesh. Overall
consistency is found across the two simulated source attri-
butions. Kanpur is situated in the Indo-Gangetic plain where
significant agricultural and industrial activity occur63,64 and
stagnant air in winter enhances particulate matter concen-
trations.65−67 Dhaka is influenced by air masses transported
from the Indo-Gangetic plain68 as well as strong local emission
sources. The residential energy use source category is the largest
simulated contributor to PM2.5 in Kanpur and Dhaka, by
substantially influencing OM and BC. An estimated 58% of the
population in India and 91% of the population in Bangladesh in
2010 burned solid fuels for domestic heating and cooking.56

Sulfate concentrations are most heavily influenced by the power
generation and industry source categories. Generally, there has
been an increase in SO2 emissions from India, driven by rapid
economic development.55,69 Fioletov et al.70 found that coal-
fired power plants account for nearly all major SO2 emission

sources seen by the OMI spacecraft instrument in India, with
growth of a factor of 2 over 2005−2014, and a factor of 3 in the
Chhattisgarh and Odisha regions, located south of the Kanpur
site and west of the Dhaka site. The main fuel for the iron and
steel industry is coal, resulting in SO2 emissions from this sector
as well.55,58 Current legislation does not require the installation
of fuel gas desulfurization in either the industrial or power
generation sectors.43,58 Elevated observed ammonia concen-
trations49 contribute to measured ammonium sulfate, and the
sensitivity of ammonium to emissions from industry and power
generation. Dust is a notable contributor to measured PM2.5 in
South Asia, accounting for 11% of total PM2.5 in Dhaka and 8%
in Kanpur due to both anthropogenic and natural sources.
Previous studies (e.g., refs 63,71−76) have found evidence of
desert dust transport from the western Thar Desert, Northeast
Africa, and the Gulf region. The overestimation of the dust
contribution to PM2.5 by the simulation highlights the need for
further development of the AFCID inventory and mineral dust
simulation.

Southeast Asia. Figure S5 shows the measured PM2.5
composition and source attribution at three SPARTAN sites
in Southeast Asia: Bandung, Indonesia; Manila, Philippines; and
Singapore. At all three sites, measured PM2.5 is dominated by
RM/OM, sulfate, and BC. The residential energy use source
category has the largest impact on OM concentrations in
Bandung and Manila through the burning of solid fuels in
domestic cooking and heating; at least 50% of the population in
Indonesia and the Philippines was estimated to burn solid fuels
for domestic cooking in 2010.56 The negative biases in simulated
OM and BC contributions suggest the contribution from the
residential energy use combustion source may be underesti-
mated. Open fires dominate OM concentrations in Singapore
where seasonal biomass burning events throughout Southeast
Asia significantly impact ground-level air quality.77−79 The OM
simulation bias in Singapore could reflect mismatch in
representing long-range transport of biomass burning emissions
for the measurement period. Significant contributions to sulfate
concentrations arise from the industry and power generation
source categories from SO2 emissions due to burning of high-
sulfur containing fossil fuels in boilers, limestone kilns, furnaces,
and power plants. A minor source of sulfate is the other source
category as atmospheric oxidation of oceanic DMS,80 and in
Bandung, nearby volcanos.81 The overestimation of sulfate and
ammonium in Manila, which is not found at the other two sites
in this region, implies uncertainty in local emissions. The low
measured and simulated nitrate concentrations at all three sites
reflect ambient temperatures that thermodynamically limit
NH4NO3 formation. The dust component of PM2.5 in Southeast
Asia is dominated by anthropogenic dust from industry, power
generation, and transport in this region.

Sub-Saharan Africa. Figure S6 shows the measured PM2.5
composition and source attribution in Ilorin, Nigeria, and
Pretoria, South Africa. Both sites have measured PM2.5
concentrations below 20 μg m−3 that are mostly composed of
residual (organic) mass, dust, and sulfate. Pronounced mineral
dust concentrations in Ilorin arise from the Sahara Desert, where
seasonal Harmattan trade winds advect fine dust to West
Africa.82 Both sites are influenced by the open fires and
residential energy use source categories. Ilorin is downwind of
seasonal biomass burning events in west Africa,83 whereas open
fires in central Africa affect South Africa.83 The burning of solid
fuels (e.g., biofuel and coal) for domestic stoves and heaters
accounts for the influence of the residential energy category on
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organic, sulfate, and BC concentrations. In 2010 an estimated
74% of households used solid fuels for domestic cooking
in Nigeria.56 Other sources of OM in PM2.5 are biogenic
VOCs from regional vegetation. Unlike many other SPARTAN
sites, the industry and power generation source categories
have minimal influence on PM2.5 concentrations in Ilorin.
However, power generation and industry are leading contribut-
ing source categories to sulfate in the industrialized city of
Pretoria, although uncertainty in these emissions may lead to an
overestimation.
Buenos Aires, Argentina. Figure S7 shows the measured

PM2.5 composition and source attribution in Buenos Aires,
Argentina. Distinct from other SPARTAN sites, sensitivity simu-
lations suggest most PM2.5 arises from other, mostly natural,
sources. SPARTAN measurements corroborate this conclusion,
with 21% of PM2.5 from sea salt, 20% from organics, and 16%
from mineral dust. Mineral dust from the arid desert region to
the northwest of the city influences the dust content of PM2.5 at
this site.73 Substantial cropland to the west and tree covered
areas to the north84 provide a source of secondary organic
aerosol from oxidation of biogenic emissions of VOCs such as
isoprene and other monoterpenes. The flux of oceanic DMS
influences sulfate;80 however, this source appears overestimated
as indicated by the measurement-simulation differences. Industry
and power generation are also notable sources of sulfate in
Buenos Aires. Open fires from deforestation activity in
the Amazon produce plumes that affect air quality in
Argentina.85,86 Organic content increases when ammonia
emissions from agriculture are removed due to increased aerosol
acidity.

Rehovot, Israel. Figure S8 shows the measured PM2.5
composition and source attribution at the Middle East site in
Rehovot, Israel. Other, mostly natural, sources are the leading
source category in this region, dominated by mineral dust;
SPARTAN measurements indicate that 26% of PM2.5 is dust,
and also suggest that the simulation is overestimating this
source. Power generation has the largest anthropogenic impact
on PM2.5 concentrations and is the leading source of sulfate at
this site. The Middle East is among the largest SO2 emitting
regions in the world from oil fields and refineries.43,44,70

Transport of air masses from Europe have been shown to influ-
ence ground-level concentrations (e.g., refs 87, 88). Ammonium
is found to be sensitive to sources of sulfate, suggesting elevated
background NH3; Clarisse et al.

49 reported NH3 columns well
above background level in the Nile River Delta, southwest of the
sampling site. Simulated ammonium is again higher thanmeasure-
ments. Elevated temperatures thermodynamically inhibit for-
mation of particulate nitrate. The negative bias in simulated OM
and BC suggests a missing combustion source.

Global PM2.5 Source Categories. Overall, the general
consistency of the simulation with measured PM2.5 composition
supports the applicability of using sensitivity simulations to
explore the influence of source categories to global population-
weighted PM2.5. The most prominent exceptions are positive
bias in ammonium nitrate and dust, implying that sensitivities to
agricultural and crustal sources should be interpreted with
caution. Figure 2 shows the impact of seven source categories to
PM2.5 as determined from sensitivity simulations that separately
exclude each source. Values inset show the global population-
weightedmean PM2.5 concentrations from each source. The sum

Figure 2.Global simulated annual mean total PM2.5 mass (top left) and contribution from seven source categories at 35% RH following measurement
protocols. Inset values display the global population-weighted average PM2.5 concentration from each source category. Gray denotes water.
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of PM2.5 concentrations from the seven source sectors exceeds the
global mean PM2.5 concentration (36.9 vs 32.6 μg/m3) due to
nonlinearity in modeled aerosol processes.
Six primarily anthropogenic categories contribute 76% of

global PM2.5 exposure. The residential energy use sector has the
largest anthropogenic contribution, responsible for 21%
(7.9 μg/m3) of population-weighted PM2.5. This residential
category primarily includes small combustion sources for
domestic heating, cooking, and waste disposal. These biofuel
sources, diesel generators and burning of household waste,
produce a large amount of indoor and outdoor carbonaceous
PM2.5 with implications for human health.7,41,89,90 The
contribution of this source category to outdoor PM2.5 is most
pronounced in the populous areas of South Asia, East Asia, and
Africa. Lacey et al.39 found that the elimination of solid fuel
cookstoves over a 20-year period could avoid 22.5 million
premature deaths associated with outdoor PM2.5 between the
years 2000 and 2100.
Industry is the second largest anthropogenic source category,

contributing to 18% (6.5 μg/m3) of population-weighted PM2.5.
Emissions from the industry source category include manu-
facturing of iron, steel, pulp, and paper, as well as oil refineries
and fuel production. Industry contributes significantly to PM2.5
in China and India and has a notable impact near major urban
areas in the Americas, Europe, and Southeast Asia. The impact is
highest in emerging economies and industrialized countries, in
part due to international trade.91,92

The four remaining anthropogenic categories are responsible
for 37% of population-weighted PM2.5. Power generation,
although not the leading source in any one region, makes a
prominent contribution of 15% to global population-weighted
PM2.5. Emissions of SO2 and NOx from fossil fuel fired power
plants are readily oxidized in the atmosphere to sulfate and
nitrate, leading to enhanced PM2.5 concentrations, especially in
South Asia, East Asia, and North America. Agriculture, primarily
NH3 and NOx from fertilizer and domesticated animals,
contributes 9% to global-population weighted PM2.5. Agricul-
ture is the leading source category in most of Europe and one of
the leading sources over much of China and parts of India,
similar to the findings of Lelieveld et al.7 The PM2.5 contribution
from agricultural activity is largest where both a large nitric acid
burden exists from NOx emissions and where excess ammonia is
available. The positive biases found in simulated ammonium
nitrate suggest the sensitivity of PM2.5 to this source may be
overestimated. Transportation emissions contribute 8% of global
population-weighted PM2.5 through emissions of NOx,organics,
BC, and SO2; the most heavily influenced regions are East Asia,
Southeast Asia, and the Indo-Gangetic plain. Emissions of
carbonaceous aerosol and gaseous organic compounds from
open fires comprise only 5% of population-weightedmean PM2.5
concentrations. However, open fires can dominate PM2.5 mass in
large parts of the tropical and borealforests.
All sources not clearly controlled by mitigation strategies,

primarily natural in origin, are lumped into a single “Other
sources” category described in Table S3. This combined Other
category contributes 24% of population-weighted PM2.5.
Sources include mineral dust that dominates PM2.5 in arid and
semiarid regions of North Africa, the Middle East, Central Asia,
and Australia. The size distribution of lofted dust aerosols
extends from the coarse mode into the fine mode of PM2.5 that
can remain suspended and undergo long-range transport.93,94

This dust source may be overestimated. Sources of biogenic
organic compounds, NOx from soil, and microbial activity

of oceanic dimethyl sulfide contribute to a diffuse PM2.5
background.

■ DISCUSSION
This initial interpretation of globally dispersed ambient PM2.5
mass and composition measurements from SPARTAN with the
GEOS-Chem model, with development motivated by SPAR-
TAN measurements and constrained by satellite-based
estimates of PM2.5, identified a promising level of agreement
along with areas for further model development. To our knowl-
edge, this is the first global source attribution study that includes
either constraints from satellite observations or comparison with
global PM2.5 composition measurements. Consistency between
simulated and observed PM2.5 composition adds confidence in
utilizing the sensitivity simulations to identify the ambient PM2.5
sources with prominent influence on population-weighted
PM2.5. The pronounced global contributions from residential
energy use (21%), industry (18%), and power generation (15%)
warrant further attention.
However, site-specific discrepancies between measured and

simulated components such as nitrate/ammonium in Beijing
and Kanpur, sulfate/ammonium in Manila and Buenos Aires,
and dust in Ilorin and Rehovot provide insight into local biases
in simulated PM2.5 composition. It is possible that previous
global source attribution studies (e.g., refs 7, 95, and 96) exhibit
biases as well. Evidence of incomplete sulfate neutralization
at SPARTAN sites, which is not captured in the simulation,
requires additional investigation as this may partially explain the
overestimate of simulated ammonium and nitrate concen-
trations. Although improvements to the dust simulation and
emissions have been implemented in recent model versions
(e.g., refs 31, 97), further attention is needed to mineral and
AFCID emission inventories to address regional differences.98

Simulated OM remains underestimated at most SPARTAN
sites, reiterating that development is needed to aerosol processes
(e.g., SOA formation) and emission inventories that control this
primary component (e.g., residential energy use and open fires).
SPARTAN provides speciated PM2.5 measurements in many
traditionally under-sampled regions, which could be used to
constrain assimilations and inform developments to global
chemical transport models. Additional ground-based, global
measurements of PM2.5 mass and composition will also be
important to evaluate and improve these source attribution
estimates.
We welcome expressions of interest to join this grass-roots

network. Data collected by SPARTAN are publicly available
at www.spartan-network.org.
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