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Abstract: In the present study, we assessed for the first time the performance of our custom-
designed low-cost Particulate Matter (PM) monitoring devices (Atmos) in measuring PMio
concentrations. We examined the ambient PMio levels during an intense measurement campaign at
two sites in the Delhi National Capital Region (NCR), India. In this study, we validated the un-
calibrated Atmos for measuring ambient PMio concentrations at highly polluted monitoring sites.
PMio concentration from Atmos, containing laser scattering-based Plantower PM sensor, was
comparable with that measured from research-grade scanning mobility particle sizers (SMPS) in
combination with optical particle sizers (OPS) and aerodynamic particle sizers (APS). The
un-calibrated sensors often provided accurate PMio measurements, particularly in capturing
real-time hourly concentrations variations. Quantile-Quantile plots (QQ-plots) for data collected
during the selected deployment period showed positively skewed PMio datasets. Strong Spearman's
rank-order correlations (rs = 0.64-0.83) between the studied instruments indicated the utility of
low-cost Plantower PM sensors in measuring PMuo in the real-world context. Additionally, the heat
map for weekly datasets demonstrated high R? values, establishing the efficacy of PM sensor in PM1o
measurement in highly polluted environmental conditions.

Keywords: urban air pollution; PMio; real-time monitoring; low-cost sensors; data merging tool;
data validation

1. Introduction

One in eight deaths in India is said to be caused by air pollution, according to a report
co-authored by the Indian Council of Medical Research [1]. Particulate matter (PM) includes inhalable
PM (PMi, aerodynamic diameter < 10 pum) and finer PM (PM2s aerodynamic diameter
< 2.5 um), and PM-based air pollution is said to be the leading cause of deaths from ambient air
pollution [2—4]. The annual average PMio and PM2s concentrations in Indian cities were found to be
106.4 and 58.6 pug-m=, respectively, with every 10 ug-m= increase in PM:2s increasing all-cause
mortality by between 3% and 26%, chances of childhood asthma by 16%, chances of lung cancer by
36%, and heart attacks by 44%. India, as of January 2020, has around 200 citizen-facing Continuous
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Ambient Air Quality Monitoring Stations (CAAQMS), which provide real-time PM2s or PMio
information to people. The country has over 4000 cities and towns where real-time air quality
monitoring stations are required to be installed. The “affordable” or “low-cost” sensor devices to
measure these PMs is a promising technology for increasing the density of the sparse urban PM
pollution monitoring network [5-8]. In developing countries like India, the implementation of such
technology becomes a very relevant solution for large-scale deployment of a nationwide air quality
monitoring network [9-11]. Measurements of air pollution underpin a wide range of applications
that extend from academic investigation to regulatory functions and services for the general public,
governments, and businesses [12]. A nationwide dataset on air pollution is required to raise
awareness of pollution and for advancing research in associated fields. Public and media attention is
increasingly conscious of the health and economic expenses of high outdoor PM pollution.

Consequently, start-up companies are stepping up to produce affordable, user-friendly, and
very compact wireless PM sensors to monitor air pollution [9,13-16]. These devices have the potential
to bridge gaps between sparse government measurements and research groups to assess their
exposure [17,18]. This wide-ranging use of this technology presumes that these portable, low-cost air
pollution sensors are fit for PM measurements, although the analysis of the data quality is a subject
of lively debate [19,20]. Lewis and Edwards [20] commented that the penetration of these devices into
the public domain, generating a large amount of unproven data, is inevitable. Since low-cost PM
sensors have not been scientifically evaluated and certified by regulatory agencies as yet, there is a
significant need for benchmarking them against accurate monitors before deploying into the field
conditions. Efforts from environmental technologists are of utmost importance so that these emerging
technologies can realize their true potential [10,21]. The United States Environmental Protection
Agency (US EPA). approved instruments for measuring PM concentrations include impactors,
cyclones, Tapered Element Oscillating Microbalances (TEOM), and Beta Attenuation Monitors
(BAM) [22]. These techniques are the US EPA-approved Federal Reference Methods (FRMs) of
measuring PM for aerodynamic size less than 2.5 um (PM2s) and size less than 10 um (PMuio) from the
ambient. These techniques, however, are reported to neglect the prospect of being able to correlate
the variations in short-term intra-day atmospheric parameters [23,24].

Consequently, these non-continuous techniques can affect ambient particle concentration [24].
On the other hand, a continuous method could obtain PMio levels through measurements by a
combined system comprising of certified instruments, i.e., scanning mobility particle sizer (SMPS)
and optical particle sizer (OPS) or aerodynamic particle sizer (APS). These derive particle mass
concentrations from measured particle size distributions [23]. Evaluation of the SMPS-APS system
has successfully determined to match well with the reference instrumentations for measuring PM
concentrations [24-26]. Moreover, it was demonstrated experimentally that APS and OPS similarly
measure PM [27]. Multi Instrument Manager Version 3.0 (MIM™ 3.0), a data merging tool, is useful
in providing PMio concentrations from two different research-grade equipment for measuring
particulates (in two different ranges) in the absence of a single reference instrument. Notably, in
emerging economies around the world, these well-proven techniques would play a vital role in
validating PM2s, PM2s-10 (coarse particles), and PMio sensors.

Continuous PMi measurement instruments, including federal equivalent methods (FEMs) and
other standardized research-grade devices, often cost several hundred thousand dollars and, in
general, must be run in climate-controlled conditions and with extensive oversight and repairs. These
instruments require significant effort to operate continuously for in-depth aerosol-driven deep
statistical analysis. It is, therefore, not a cost-effective approach to rely only on these instruments to
generate additional insight into pollution behavior across the country [23]. New sensor technologies
may address some issues of cost and convenience posed by conventional measurement equipment.
On the other hand, sensor-based PM monitors are available in roughly three orders of magnitude
lower than standard instruments [10]. The overall budget of execution encompassing all other costs,
such as data analytics, sensor replacement timeframe, and sensor calibration, is less well
established [23]. The use of affordable miniature sensors is already underway in different
applications, such as identifying hotspots for outdoor pollution, generating additional insight into
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pollution behavior with higher spatial and temporal resolution, mapping indoor pollution
concentrations, accumulating data on personal exposure, and collecting mobile monitoring data
[28-30]. Concerns about their precision and performance do remain unanswered [23,30].

In this manuscript, only PMio is compared and not the other important metrics, such as PM2s or
PM:1. Using low-cost sensors, many authors have already well-documented PM: and PM:s across the
world. Another work [7] published on the performance evaluation of low-cost PM sensors by some
of the authors of our research group evaluated PM2s using a low-cost PM sensor at IIT Kanpur and
Duke University campuses. They validated Plantower PM sensors for PM25 measurements. They
demonstrated field calibration of these PM sensors using Environmental Beta Attenuation Monitor
(EBAM) as reference instruments for PM2s measurements at multiple sites with diverse
environments. Mostly, the PM sensors, including the Plantower model PMS7003, are validated for
PM25 measurements. However, to the best of our knowledge, no detailed study in India has been
published focusing on the assessment of PMio concentration using low-cost PM sensors in real-world
scenarios. We compare our sensors in measuring PMuo levels with the co-located SMPS-OPS and
SMPS-APS. We collect PMio data during an intense measurement campaign period of seven weeks
conducted for pollution monitoring at two selected sites in the Delhi National Capital Region (NCR),
India. Merging data obtained from the certified reference instruments result in approximate overall
PM mass concentrations. We validate our PM sensors for PMio data with the aid of statistical tools.

2. Materials and Methods

2.1. Study Site

The two selected study sites were Manav Rachna International Institute of Research and Studies
(MRIU), Faridabad, (28.45°N, 77.28°E and ~209 m above msl), and Centre for Atmospheric Sciences,
Indian Institute of Technology Delhi (IITD), New Delhi, (28.54°N, 77.19°E and ~232 m above msl).
These sites are in the Delhi-NCR (which is among the top-ranked polluted megacities in the
world) [31]. Both the sites exist in the Indo-Gangetic Plain (IGP), which, due to its geographical
components and some specific anthropogenic activities, is considered a hotspot for air
pollution [32]. The selected sites suffer from heavy air pollution that masks the whole region, usually
during the winter season. The field deployment of PM2s sensors at similar polluted monitoring sites
is reported to perform well [7,33]. We considered only the two polluted locations in the populous
Delhi-NCR, India, to cover the higher range of PMio concentration. Our aim was specified to test the
low-cost PM sensors in highly polluted cities and find their suitability in PMio measurements.

The PM sensors were mounted on the terrace of the buildings at the respective sites. The
research-grade instruments were kept inside the room, while their inlets were connected through
tubing for the intake of ambient air from the outside the window. The mounted sensors and reference
instruments were deployed such that their sample inlets were very close to each other to provide
similar environmental conditions. At first, the two newly developed Atmos devices were installed
side by side at the rooftop of Centre for Environmental Science and Engineering, Indian Institute of
Technology Kanpur (IITK; 26.52°N, 80.23°E, 142 m msl), India. The ambient environment of Kanpur,
India, which also comes in the IGP, is also known for its characteristic high ambient particulate
concentrations. Sensors were implemented for two and a half weeks at the IITK site. After attaining
sufficient data, these devices were tested for consistency, as described in the
methodology section.

2.2. Instrumentation

New Plantower PM Sensor: The new low-cost sensors assessed in this study were Plantower PM
sensors (model PMS7003). The Amos device is presented in Figure 1a. These devices are priced at
only a fraction of the cost of the reference monitors. The measurement range of the PM sensors used
was 0-1000 pg-m=3, with a resolution of +1 ug-m?® and response time 1-10 s. The dimension of the
miniature PM sensors used was 48 mm x 37 mm x 12 mm, and the temperature and relative humidity
ranges were —10 °C to 60 °C and 0% to 99%, respectively. The manufacturer reported that maximum
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errors were relatively low (+10 pg-m?3 in < 100 ug-m=3 concentrations, and +10% in the 100-500 ug-m-
3 range). The detailed specifications of the PM sensor used in this study are described in
Supplementary Table S1. These PM sensors use a laser-scattering technique to measure real-time PM
mass concentrations and apportion laser scattering to PMi, PMzs, and PMuw. It is based on a
proprietary algorithm that is not fully accessible by others [34]. A detailed description of the working
of selected PM sensors is mentioned in a field evaluation study of PMzs by Zheng et al. [7]. We used
the sensor-reported PMio concentration estimates that were un-calibrated. Before field deployment,
no attempt was made to calibrate these sensors under laboratory conditions due to a potentially
marked discrepancy in particle size, composition, and optical properties of field and laboratory
conditions [7].

Atmos—Real-Time PM Air Quality Monitors: The newly developed PM sensor Atmos box
housing all the components is as shown in Figure 1b. The Atmos device uses the Plantower PMS7003
sensor for measuring PMi1, PM2s, and PMio concentration values. The DHT22 sensor is used for
monitoring temperature and relative humidity. The data from both these sensors are transmitted in
real-time via a Quectel M66 general packet radio services (GPRS) module using 2G mobile network
connectivity from local mobile service providers. A rechargeable Li-Ion battery provides backup
power to the device for 10 hours. In the case of power failure, there is a seamless failover of the power
module from the mains power to the backup battery. From our device itself, a local MicroSD card
slot allows data to be stored and downloaded. The Atmos unit also has a Liquid Crystal Display
(LCD) to view debug messages. The Atmos unit was developed in two models—with an external
onboard GPS and without the GPS. The Atmos GPRS model used in this study had dimensions of
length 155 mm x width 80 mm x height 60 mm. The Atmos device used the HTTP protocol to send
data every 1 minute to the remote Atmos server.

Atmos—Big Data application program interface (API) and Dashboard Access: The Atmos
real-time streaming data server was built using open source technologies-Apache Cassandra and
KairosDB. For fast time-series database access, Apache Tomcat and HTTP server, for custom Java-
based API access and HTML5/JavaScript/Leaflet]S for interactive Map-based dashboard were used.
Data from the Atmos device is received on the server via web services APIs and made available for
comma-separated values (CSV) download and programmatic JavaScript Object Notation (JSON)
access via custom-built Java APIs. Device nos. 0523 and 1292 were the two Atmos deployed at MRIU
and IITD, respectively, after testing their sensitivity at ambient conditions in Kanpur, as shown in
Figure 1c.

Reference Sizers: We measured particle concentration in the range of 14 nm-10 pm. We used a
combination of an OPS™, Model 3330, TSI Inc., Shoreview, Minnesota, United States of America
(USA) (for particles ranging from 0.3 pm to 10 um), APS™, Model 3321, TSI Inc., USA (for particles
ranging from 0.5 um to 20 pm). The SMPS™, TSI Inc., consisting of an electrostatic classifier, Model
3082, connected to a condensation particle counter (CPC, model 3776, TSI Inc., USA (from 14 nm to
760 nm particles) as shown in Figure 1d. The time resolution for the measurements was 5 min, so that
12 data points of every hour were averaged to get hourly concentrations. The SMPS utilized a
differential mobility analyzer (DMA) to classify particles as a function of electrical mobility size. At
the same time, with a condensation particle counter (CPC), it determined particle concentrations,
giving particle size distributions. Mass concentrations were computed through the integration of the
product of the size distribution function and particle mass of every size. We acquired a continuous
particle size distribution function through data inversion. It further related particulate concentration
to the charging efficacy of the neutralizer, the detection efficiency of the CPC, and the transfer
function of the DMA [35]. The merging process was adapted following by the method described by
[36], forming the complete size distribution from 14 nm to 10 pm. However, we stated a brief on the
merging process in the subsequent sub-section. We applied the necessary corrections in all the
reference measuring instruments before merging and during merging, as per the requisite.
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Figure 1. Images from the deployment of low-cost particulate matter (PM) sensors at the study site.
(a) PM sensor Atmos comparable to the size of a marker pen, (b) the PM sensor box housing all
components, (c¢) two sensor boxes (used in this study) co-located for consistency test, and
(d) experimental setup at one of the monitoring sites for ambient air monitoring.

Data Merging: We merged the SMPS number distribution data with APS number distribution
data using the Data Merger software Module (developed by TSI) to obtain merged mass distribution
(dM/dlogDp versus Dp). During the monitoring period, we averaged the samples recorded every
hour at the time of data merging. We then summed the hourly mass distributions using the
trapezoidal rule to acquire hourly PM concentrations.

The SMPS number distribution data were merged with OPS number distribution data using
MIM™ 3.0 (developed by TSI) in the mass mode to get PM concentrations for every hour. The MIM
software is a MATLAB-based tool that allows reviewing, averaging, merging, and post-processing of
data from SMPS and OPS and compiles it into a single, wide-range data set. TSI introduced it after
the initial development of dedicated algorithms [37,38]. We averaged samples recorded over one
hour during data merging. We then compared the PMio obtained from SMPS and OPS data merging
and the PMio derived from the combination of SMPS and APS data. Thus, we tested merging for its
suitability in getting SMPS- and OPS-acquired PM mass and also tested for over and under
prediction. The merging process eliminated the discontinuity in the number distribution [39]. We
took into account the inherent difference between the mobility size measured by the SMPS and
aerodynamic diameter measured by the APS. During the merging, the shape factor of 1, as described
by Misra et al. [40], and a widely accepted density of bulk atmospheric aerosols equal to 1.2 g.cm™?,
was taken in the data analysis. As described by them, we combined the size distributions from SMPS
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and APS into a single size distribution (from 14 nm—20 pum) [40]. For this purpose, we used the TSI
Aerosol Instrument Manager Program Data merge software module version 3.0.1.0.

2.3. Methodology

The methodology included a consistency check of the Atmos PM sensors used in similar field
conditions. It also included correlating site-specific data collected from different combinations of
devices and validation of Atmos PMio concentrations using merged data as a reference. The schematic
flowchart for this study is shown in Figure 2.

Atmos PMS 7003

SMPS+APS SMPS+OPS
sensors

Consistency
observed ?

Correlating
well ?

Concentration idati Data collection for
Analysis No values a?ngﬂfgélfr;] Validation further validation
match well ? to perform

A 4
Statistical analysis

Reason for 5 : quantile-quantile-Plot,
variation in data Discussion Spearman's rank order
correlation,

heat map

Figure 2. Schematic diagram showing the methodology used in this study.

Although a single manufacturer developed the PM sensors that were used in the studied Atmos
boxes, their performance in measuring PMio has not yet been tested in field conditions. First, we
checked the sensors for consistency, and then we deployed them in the field next to the inlets of
different research-grade PM measuring instruments. We compared sensor data with the merged PMuo
concentration from the reference instruments. The suitability of using SMPS-OPS merged PMio was
evaluated for reference measurements and as an alternative to well-demonstrated SMPS-APS
merged PM-products [39]. However, studies have focused on getting number size distribution mostly
from the SMPS-APS combination [24,26]. Simultaneously, merged PMio from SMPS-OPS at both the
sites (MRIU, Faridabad and IITD, New Delhi) and from SMPS-APS only at one of the monitoring
sites (MRIU, Faridabad) was used to validate Atmos PMio measurements.

2.4. Statistical Analysis

The experimental results from the deployment period were statistically analyzed using R
packages, namely psych, rcompanion, and ggpubr. This included determining the mean, standard
deviation, Quantile-Quantile plot (QQ-plot) formation, Pearson correlation (r), and Spearman's
correlation (rs). We followed a methodology as described in Ann et al. [41], Well and Myers [42], and
Cohen [43]. Data were collected and arranged for analysis in a spreadsheet under Microsoft® Excel®
2020, Furthermore, a time series for PM2s, PMio, and coarse particles for the deployment period as well
as a heat map were plotted for weekly-basis PMiw data during the campaign using Origin pro
evaluation, 2018 software. We sought the influence of the sensors’ run-time duration on the
correlation with the measured PMio concentrations.

3. Results and Discussion

This section discusses various analyses done on the data collected during the
considered deployment.
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3.1. Consistency Test among the Sensors

Before deployment in Delhi-NCR, we co-located both the selected Atmos devices (device
numbers 0523 and 1292, or Sensor 1 and Sensor 2, respectively) for a sufficient duration at IITK, India.
A study conducted in Kanpur showed that PM concentration levels are quite high, similar to
Delhi-NCR, with a wide-range in PM concentrations [44]. Reported studies have analyzed trends of
PMuo in Delhi and Kanpur, India, and have found crop residue burning to be a major source. Zheng
et al. [7] also selected Kanpur as a site for PM sensor field deployment with characteristic high PM
concentrations. Time series and scatter plots observed for the two co-located Atmos devices (sensor
one and sensor two) during this period are shown in Figure 3a,b, respectively.
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Figure 3. (a) Time-series of ambient PMio concentrations (ug-m=) from two co-located Atmos PM
sensors for consistency test and (b) scatterplot for the collected data from two co-located sensors at

ambient conditions.

The time series indicated that the ambient PMio concentrations (pg-m=) from two co-located
Atmos PM sensors (PMS7003) were quite similar for the entire test period of two and a half weeks.
We observed that the hourly time series for PM concentrations measured by both the devices matched
very well. Consistency was observed between both the devices in measuring the ambient conditions
with PMio concentrations <100 pg-m= and ranging up to 579 pg-m=. A similar time series or pattern
was observed for both the devices without any ambiguities in them. In other words, no significant
variation seemed to appear in measured PM concentrations (p < 0.05) among the two devices. For the
two studied devices, for two and a half weeks, the coefficient of determination (R?) was found to be
0.97. This indicates a strong correlation between the two sensor boxes. Time series and scatter plots
from the two Atmos devices were expected to be highly similar as these were from the same
manufacturer, as reported by many authors [7,45]. However, due to limited field evaluation results
from the manufacturer, we examined the consistency in the real-world scenario. The cause of slight
variations in the ambient PM measurements may consist of instrument contamination, changed fan
flow rates, and potentially inadequate cleaning of the sensors [46].

Attempting a consistency test for the PMio measurement of studied Atmos sensors at MRIU and
IITD sites provided high confidence in terms of their deployment in the real-world conditions or
fields. Hence, these devices were then co-deployed in the Delhi-NCR next to the research-grade PM

measuring instruments.

3.2. Time Series of Measured PMio Concentrations
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After collecting sufficient PM1o data during the deployment period of 21 January 2018-16 March
2018, time series were plotted for the two study sites, as shown in Figure 4a,b. The PMuo time series
plots for the two sites consisted of data from SMPS-OPS, SMPS-APS, and Atmos at MRIU and data
from SMPS-OPS and Atmos at IITD. Total numbers of hourly averaged data points at MRIU,
Faridabad from SMPS-OPS, Atmos PM sensor, and SMPS-APS were 717, 1124, and 766, respectively.
The overall mean PMio concentrations measured by SMPS-OPS, Atmos PM sensor, and SMPS-APS
were 98.2 + 65.5 ug-m?, 149.2 + 86.1 ug-m?, and 74.4 + 54.6 pg-m=, respectively.
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Figure 4. Time series of ambient PMio concentrations (ug-m=) data collected from Atmos PMS7003
sensor and reference instruments (merged PMio from SMPS-OPS and SMPS-APS) during the
deployment period at (a) Manav Rachna International Institute of Research and Studies, Faridabad
(Delhi-NCR) and (b) Indian Institute of Technology Delhi, New Delhi monitoring sites.

The total number of hourly averaged data points at IITD, New Delhi from SMPS-OPS and the
Atmos PM sensor was 832 and 1029, respectively. Mean PMio concentrations measured by
SMPS-OPS and Atmos were 182.3 + 84.2 pg-m= and 181.0 + 111.5 pug-m=3, respectively. The idea was
to look for PMio concentrations patterns of Atmos with SMPS-APS and to evaluate the correlation
between SMPS-APS and SMPS-OPS, simultaneously. At both MRIU and IITD sites, trends obtained
for measured PMio concentrations by Atmos matched those estimated by the reference instruments.
However, Atmos was generally on the higher side among the two tools measuring PMio levels.
Similarly, previous studies on low-cost PM sensors have shown that the sensors overestimated
ambient PM:s to that with the reference monitors readings [34,47].

We measured the mean absolute error (MAE) for each of the pairs of datasets. The observed
MAE value in measured PMio from Atmos (uncorrected) at the IITD site concerning SMPS-OPS was
68.74 pug'm=. On the other hand, observed MAEs in Atmos at MRIU site while comparing with
SMPS-OPS and SMPS-APS were 56.63 ug-m= and 68.43 ug-m=3, respectively. These uncorrected PMio
readings of the sensors have an offset from that of the reference measured concentrations. The
potential effect of relative humidity on particle size measurements could be attributed to the offset in
measurements of PM sensors [7,17,23,48,49].

The concentration trends of SMPS-OPS were well tracked by Atmos, suggesting SMPS-OPS to
be suitable for consideration as a reference for ambient PM1o measurements for sites with high PMio
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concentration environments. This enhances the scope for different research communities to use
affordable PM sensors and validate and calibrate PMio datasets using extensive data collection by
merging SMPS-OPS data.

As far as the environmental impacts are concerned, the daily PMio concentrations exceeded the
Indian Central Pollution Control Board limit (100 pg-m=) most of the days during the studied
deployment period. The PMi mass concentrations at both the sites were quite high during the
monitoring period of seven weeks of January-March. The PMuo levels are comparable to those
estimated by Tiwari et al. [50] measured by the recommended method for multiple sites in Delhi in
the same months. In addition to this, the measured PMi mass was highest during the initial
monitoring period, which gradually decreased on moving from week 1 to week 7. Nagar et al. [44]
also showed that in the winter season, PMio concentrations were higher during the January months
in comparison to the next subsequent months. Results from our study are in agreement with the long-
term research on seasonal variation and annual pattern in PMio conducted in Ganga Basin [44].
Diurnal variations by both the devices matched quite well. For high PM concentrations,
anthropogenic sources like biomass burning products with downwind directions were reported as
one of the principal contributors. Crop residue burning is identified and well documented as the
primary cause of high PMio concentrations in the studied regions [51-53].

The total number of hourly averaged PM2s data points at IITD and New Delhi from SMPS-OPS
and the Atmos PM sensor, respectively, were the same as those were recorded for PMio
(Supplementary Figure S1). Mean PM:s5 concentrations measured by SMPS-OPS and Atmos were
117.31 + 64.7 pgm= and 161.70 + 98.0 pg-m=3, respectively, for the same measurement period.
Similarly, at MRIU the mean PM:zs5 concentrations measured by SMPS-OPS, SMPS-APS, and Atmos
were 65.0 + 51.3 ug'm3, 72.3 + 52.2 ug'm=, and 139.1 = 74.7 pug-m=3, respectively, for the same
measurement period. The PMas concentrations from Atmos tracked well the measured
concentrations of reference instruments for both the sites. Nevertheless, the values were
overestimated as there was a constant offset between the measured concentrations from both.

The idea was to look for PMio concentrations patterns of Atmos with SMPS-APS and to evaluate
the correlation between SMPS-APS and SMPS-OPS, simultaneously. At both MRIU and IITD sites,
however, Atmos was generally on the higher side among the two devices measuring PMuo levels.
Similarly, previous studies on low-cost PM sensors have shown that the sensors overestimated
ambient PMzs compared to the reference monitors readings [37,47].

Previous research works have also reported that these sensors determine size fractions
differently from exact measurements of PM concentrations [54]. Similarly, the precision levels at
various locations may differ depending on the chemical composition and particle size distribution
[23]. Again, for the sites with a dominating source like traffic emissions, the changing size distribution
on an hourly-averaged basis may also add a distinguishable change in error to the measured PM
concentrations [53]. In our case as well, the MRIU site was located in the proximity of a busy
cross-town roadway, which was likely to affect the performance of the different PM measuring
devices. Moreover, both the locations were urban backgrounds. Hence, the respective environments
could be affected by local sources such as campus vehicles, street sweeping, and other local emission
sources inside the institutes. Particle measurements, when categorized across various size ranges,
could be even more complicated than the analysis of gaseous pollutants. They may be altered by
many parameters that vary for different measuring techniques and diverse particle kinds [55].

3.3. Distribution Pattern and Pairwise Correlation of Measured PMio Data

At first look, the patterns of the PMio concentrations from different instruments appear to track
well with each other. Peaks and troughs in the measured PMio levels by Atmos devices for both the
sites followed those measured by reference instruments. Therefore, the observed PMio time series
indicated to proceed further and look for the correlations among the datasets. To select among
available options to find correlation types, we analyzed using QQ-plots for the collected data from
each device and from both the sites, as shown in Supplementary Figure S2.
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The QQ-plots, as shown in Supplementary Figure S2a—e, demonstrate the normality of data
sampled from different instruments used in this deployment. The black line inside the grey area
represents the normally distributed theoretical dataset, while the grey shaded area represents the
theoretical confidence interval of a normally distributed dataset. The black data points represent the
actual sampled data points observed for the studied instruments. If the sampled data falls within the
confidence interval, it is generally assumed to be normally distributed. However, from the above
figures, it was observed that the sampled data sets were above the confidence interval, which infers
that the sampled dataset in our case was positively skewed. This confirms the execution of
Spearman's correlation in the collected data set.

As the data collected was positively skewed, we passed both the reference and Atmos data into
the In function, which confirmed that the data was indeed log-normally distributed. The Pearson
correlation was estimated for the normally distributed data. This was done after passing the dataset
to the log-function. The Pearson correlation for the normally distributed data after moving it into
In-function was 0.67 (slightly better) for SMPS-OPS and Atmos at IITD. The observed correlations
between Atmos and merged PMio concentrations for SMPS-APS and SMPS-OPS were 0.93 and 0.84,
respectively. Similarly, in the case of PM2s, the Pearson correlation after passing the dataset to the
log-normal function was on the higher side. For the IIT Delhi site, it was observed that Pearson
correlation = 0.94 between Atmos and SMPS—OPS. While at the MRIU site, Pearson correlation = 0.86,
0.90 between Atmos and SMPS-APS and Atmos and SMPS-OPS, respectively.

The skewed data could be explained by the high seasonal variability of PM concentrations in
Delhi —January registers high PM concentrations as compared to that in March [56]. The Spearman
method does not assume normality of distribution while calculating the coefficient. It is a non-
parametric method of correlation, sometimes also referred to as a distribution-free test, and is often
used to calculate the correlation between skewed datasets. Spearman’s correlation method has an
analogy with Pearson’s method [43], which can make it comparable to the Pearson coefficient in an
analysis. It was also observed that the spearman correlation method was similar when compared
with Pearson’s correlation after the dataset was normalized using the In function. The scatter plots,
along with Spearman’s correlation for both the sites, are illustrated in Figure 5a-d. Pairwise
correlation and data distribution of measured PMio between instruments for MRIU and IITD are
presented in Figure 5e,f, respectively.
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Figure 5. Scatter plots for measured PMio between (a) SMPS-OPS and Atmos or PMS 7003 at the
Indian Institute of Technology Delhi (IITD) site, (b) SMPS-OPS and PMS 7003, (c) SMPS-APS and
SMPS-OPS, and (d) SMPS-APS and Atmos or PMS 7003 at the Manav Rachna International Institute
of Research and Studies (MRIU) site, with their respective rsand p-values, (e) pairwise correlation and
data distribution of measured PMio between SMPS-OPS, SMPS-APS, and Atmos at the MRIU site
and (f) pairwise correlation and data distribution of SMPS-OPS and Atmos at the IITD site. The grey
area along the black line represents the 95% confidence interval of regression. Numeric values in
upper halves represent the Spearman's coefficients.

We observed a p-value < 0.001 for all four cases; this rejects the null hypothesis and suggests that
there was a strong dependence between the sampled PMio measurements. The correlation is often
defined as simple-specific measure and is also affected by the variability of the sampled data sets [42].
Pairwise correlations illustrated the natural distributions of different data sets collected during the
study period. Correlation results revealed that there was a strong linear positive correlation among
the sampled datasets. The correlation between merged PMio concentrations for SMPS-APS and
SMPS-OPS was found to be 0.92 and was in line with the earlier inferred results. It is hence clear from
the rs values that OPS was able to capture the measurements in variation when compared with APS.
Furthermore, data from the SMPS section were common in both the merged PM products. These
results support the use of research-grade OPS in combination with SMPS for PM1 measurement
purposes.

Additionally, SMPS-OPS and Atmos devices at both sites seem to appear strongly correlated.
The main reason for using Spearman’s correlation was due to skewed data obtained from the
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instruments used for PMio measurements. Pearson’s correlation method requires normal distribution
as a preliminary condition to calculate an unbiased correlation. The correlation coefficient (rs > 0.64)
for each of the cases was observed to be quite high, which shows that there was a strong linear
positive correlation. The observed findings suggest that OPS, also in combination with SMPS, acted
well as the reference equipment. It may prove to be useful for developing countries’ prospects in
making portable and affordable PM sensors. Periodic calibration is recommended for these low-cost
sensors, as suggested by Rai et al. [29]. However, a more profound statistical attempt considering
confounders’ effects on their measuring efficiency is required to ensure more confidence in such
devices. The slopes and intercepts observed for the paired combinations in our study are shown in
Table 1.

Table 1. Observed parameters for different pairwise Spearman’s rank-order correlation among
sampled datasets using various PMi measuring instruments at two sites.

Instruments MRIU IITD
7s Slope  Intercept (ug-m=) s Slope Intercept (ug-m-)
SMII;\S/I—SO7§§3VS. 0.83 1.069 42.883 0.64 0.787 47.269
Sl\éﬁ;ﬁ gi;ls' 092 0782 1.640 ] ] .
SM;)EA;%;VS' 083 1188 53.396 i i )

The pairwise correlation among sampled PMio datasets also showed only 1.64 pg-m- as intercept
(for rs=0.92). These two datasets had nearly the same variation. Moreover, the parameters calculated
from correlation analysis on the conducted experiments at two sites showed no significant change
among them. However, local sources, including vehicular pollution nearby roads with other sources
for re-suspension of dust, waste burning, several combustion sources, and secondary PM formation,
are known to affect the PM-related parameters [55,57,58] routinely. Similarly, influencing factors like
temperature, relative humidity, interference due to a light source, wind speed, and pressure likely
bring variation in measurements.

The correlation observed between Atmos and reference instruments for measured PM2s was
better than that for PMio (Supplementary Figure S3). Some of the recent papers from other countries
have also shown that low-cost sensors’ PM2s matches more in comparison to PMuo [8]. In the case of
PM2s5 as well, we observed p < 0.001 for all four cases. This rejects the null hypothesis and suggests
that there was a strong dependence between the sampled values and PM2s measurements.
Correlations ranging from results revealed that there was a strong linear positive correlation among
the sampled datasets. The correlation between merged PM:s concentrations for SMPS-APS and
SMPS-OPS was found to be 0.95 (it was 0.91 in the case of PMio) and between Atmos and research-
grade instruments from 0.73 to 0.91. Since in the present study as well, the focus of the study was on
the validation part of PMio measurements by Atmos in measuring ambient concentration and to
compare it with that of the accurate research-grade instruments, detailed information on PM2s
analysis is not presented. Nevertheless, wherever necessary, we have provided the illustrations as
the supplementary files.

Furthermore, coarse PM or PM2s-10 (particle size between 2.5 and 10 um) measured from Atmos
devices at both the sites were compared along with the research-grade instruments at the respective
sites. One time series of coarse PM for the whole duration and another time series with collocated
time period with continuous period is presented in Supplementary Figure 54b. It was observed that
the Atmos captured the coarse PM, which is comparable to the research-grade instruments, and the
results were consistent for both the sites. The time series shows that the trends of the measured PMzs,
PM25-10, and PM1o from Atmos were comparable to that of the research-grade used in this study. The
mean value of PM2s10 measured from Atmos was 21.39 + 12.55 pg-m= (n = 702) while that from
SMPS-OPS and SMPS-APS were 25.52 + 18.74 (n =940) and 9.78 + 7.10 (n = 737) ug-m=3, respectively.
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Similarly, in the case of IITD site, coarse particles measured using SMPS-OPS and Atmos were 64.67
+ 33.88 and 19.75 + 14.88 ug-m3, respectively. Coarse PM data revealed that Atmos measurements
underestimated the SMPS-OPS by 2.00 and 44.92 ug-m= at the MRIU and IITD sites, respectively,
and overestimating the SMPS-APS by 24.80 pg-m=. We also found that there was a variability in the
observed coarse fraction and the ratio of PMas to PMio concentrations.

In the validation of the commodity PM sensors, a variety of reference methods were used. In our
study, we did not validate our PMio sensors to evaluate any reference methods. Instead, we looked
for the suitability of the studied PM sensor. We also used available research-grade instruments that
were considered as reference equipment to measure PMio. For insight into the stability of Atmos
devices, the heat map for the obtained R? was generated (Figure 6).

R2
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-08 PMS 7003
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SMPS-APS
- 0.6 Vs
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Figure 6. Heat map representing the coefficient of determinations (R?) for weekly basis data between
the different studied instruments during their field deployment of seven weeks. The different shades
of blue color represent different R? values ranging from 0.3-0.9, and the yellow color describes that
there was no data collected during the specific week.

The R? for each bivariate combination between the implemented PM measuring instruments for
both the sites separately was determined weekly (week 1-week 7). The daily pattern of PMas is cyclic,
and in our case, the PMio measurement was conducted over a single season. It indicated that weekly
data should be normally distributed. We, therefore, assumed that normality would prevail after
classifying the data weekly. The agreement of the Atmos (Plantower PMS7003) with the
SMPS-OPS and the SMPS-APS was observed to be moderate to high for different weeks from the
seven-weeks-long field deployment (R? = 0.3-0.9). Therefore, a heat map with various shades of blue
indicates the different coefficient of determinations observed from 0.3-0.9. Yellow represents the
absence of data during the specific week for some of the combinations. The R? values observed
between SMPS-APS and SMPS-OPS ranged from 0.6-0.9. Clearly, the R? between SMPS-APS and
SMPS-OPS at the MRIU site was seen to be very high during the whole deployment.

The observed R? for the data collected during the six weeks between Atmos and SMPS-OPS at
IITD were 0.43, 0.52, 0.56, 0.59, 0.43, and 0.81, respectively. The number of hourly data points varied
in the seven weeks time period studied. Similarly, at MRIU for the same bivariate combination, the
observed R? for consecutive weeks was 0.30, 0.45, 0.63, NA, 0.94, 0.58, and 0.44, respectively. On the
other hand, with SMPS-APS as a reference for the comparative analysis of Atmos data, the observed
R? for consecutive weeks were 0.32, 0.53, 0.63, NA, 0.68, 0.60, and 0.70, respectively. Mostly, the
observed R? for the data was generally around 0.4-0.6, except for one week with a value as high as
0.9. The number of data points for PMi in a week for IITD was 108-208, and that for MRIU was
22-173 with p < 0.001. We looked into the weekly-based data only to see the ranges of the R? between
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Atmos and reference. However, there is more scope to be looked into while considering the reliability
of Atmos in varying ambient PMio concentration ranges. It includes the duration of data collection,
the number of hourly data points, and impacting environmental parameters.

Similarly, at both the study sites, no specific diminishing concentrations were observed in the
pattern of the R? values between Atmos PM sensors and reference instruments. The results, as
mentioned above for different weekly PM sensor data, showed the correlations could go very high.
Furthermore, it would improve by applying the correction factors.

The difference between the numbers of collected samples for hourly averaged PMio
concentrations can be attributed to the varying hourly averaged data points measured during the
different weeks studied. The cause of variations in the ambient PM measurements may also include
instrument contamination, hardware degradation, changed fan flow rates, and potentially
insufficient cleaning of the sensors [46]. Zerrath et al. [27] investigated and described that the results
of the OPS matched well with the APS and SMPS. However, their investigations focused primarily
on the number of concentration and modes. For the variations between SMPS-APS and SMPS-OPS,
Zerrath et al. [27] also showed that equivalent diameters of urban aerosol measured by OPS and APS
might differ from each other in field conditions. Variations in correlation could be due to the presence
of a difference in physicochemical properties, like the density of ambient particles in
different environments.

The correlation between SMPS-OPS and SMPS-APS was observed to be very high for the MRIU
site. Similarly, Szymanski et al. [59] and Hand and Kreidenweis [60] also demonstrated that
SMPS-APS/OPS were comparable in their experiments. Data-driven analysis indicated that
SMPS-APS and SMPS-OPS are very similar in PMi measurements. Furthermore, the correlation
coefficients for PMS7003 sensors with both devices exhibited similar values for MRIU, which
reinforces the hypothesis. No specific difference in the patterns was observed due to the change in
reference data as SMPS-OPS merged data instead of the SMPS-APS combination. In developing
countries like India, there are large urban areas with less or no monitoring of air pollution [6,61]. As
already discussed, most of the existing pollution monitoring instruments used are expensive, hence
the extensive use of low-cost sensors for PM2sand PMio might be helpful in a better understanding
of sources with high-resolution spatiotemporal data, along with the lesser number of monitoring
stations equipped with reference-grade instruments. At the same time, big data generated from such
a dense network of low-cost sensors might provide crucial information and also an opportunity for
exploring further research aspects.

Additionally, seven-weeks-long data might not be sufficient to conclude the existence of drifts
in the sensor measurements. For understanding the impacts of time on the performance of Atmos, a
study over a longer duration of field deployment period is required. Johnson et al. [23] also
mentioned that the actual response of light scattering-based PM sensors is predominantly a function
of the ambient aerosol features varying with the site. Clearly, in the case of PM sensors, there is a
need to explore further its size distribution and chemical composition. The envisioned better prospect
of extensively available PM sensors hinges on data reliability. Hence, some of the limitations are
collectively described in the subsequent section.

Limitations of the study: Like most of research studies, this study also has certain limitations,
which are described below:

e A comparison of identical sensors generally revealed the highest agreement. Nevertheless,
attempting more statistical analyses might have thrown light onto the cause of even the very
slight variations among them. Accessory measurements indicating ambient temperature,
humidity, and aerosol refractive index were not included in this study. The optics-based
detection of particulates is probably affected by relative humidity. The uptake of moisture by
hygroscopic particulates leads to increased scattered light signals. An attempt to calibrate these
Atmos devices, especially for PMio measurements with longer deployment duration, may help
to explore more potential impacts from the variables such as relative humidity and temperature;

e Among the limitations of the study, lower and upper detection limits are also an expected factor
in sensor performance not considered in this case. Hence, to ensure complete accuracy, the PM
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sensors need to be deployed in the environments where they can be tested for its performance at
extreme extents. A longer duration of PM sensor deployment featuring high and low
concentrations would be a challenge;

e Data from research-grade adjacent instruments (SMPS-APS and SMPS-OPS) were proven as
suitable for PM measurements. However, to the best of our knowledge, no previous study using
these instruments for similar applications is available. Hence, we suggest looking deeper into the
data accuracy and uncertainties from these instruments as well as those being used as references;

e Transparency remained an issue with the many sensor developers where algorithms applied are
valuable intellectual property. Developers and researchers should explicitly document
independent algorithms to put faith in air sensor data. Hagler et al. [13] have also reported that
trust in the developed sensors could augment when manufacturers would share which factors
they integrated while post-processing the raw data;

e Likewise, most of the other available PM sensors studied Plantower PMS7003 also had no
inertial-based size cuts preventing large particles from moving towards the optical chamber. It is
therefore expected that it might affect the precision of readings to some extent as well. The
limitations of this study also act as points to be considered as the future scope that may further
serve with more information.

4. Conclusion

The data-driven assessment of our custom-designed sensors elucidated scopes where further
advancement in its research and development can be crucial. We emphasized inter-comparison of
low-cost PM sensors in the polluted sites in Delhi-NCR. The performance of PM sensors was
consistent, as tested by their R2 The trends of PMi, PM2s5, and PM2510 measurements from Atmos
devices matched well with research-grade monitors. The uncorrected PMio measurements by
low-cost PM sensors exhibited a strong correlation with merged PMio concentrations from S
MPS-APS and SMPS-OPS. The Atmos devices appeared promising for PMio measurement
applications. Results also showed that the un-corrected PM sensors displayed consistent performance
(with 0.64 < r. < 0.83) for PMuwo data acquired from the research-grade instruments. During the
campaign, a sufficiently high R? value was observed between PMio measured by Atmos and research-
grade instruments, which also validates the sensors’ data quality.

The weekly separation of data and the regression test implies that the Atmos devices could
estimate the PMio level very well. In some cases, for particular instances, R? > 0.7 was observed
between the devices. The few inconsistencies where data were sufficient but the device performance
was poor remain a subject of further study. Applying a calibration equation or the correction factor
should improve the sensor performance for real-time ambient PM1o measurements.

Supplementary Materials: The following are available online at www.mdpi.com/1424-8220/20/5/1347/s1, Figure
S1: Time series of ambient PM2s concentrations (ug:m=) data collected from Atmos PMS7003 sensor and
reference instruments (merged PM:zs from SPMP-OPS and SMPS-APS) during the deployment period at (a)
Manav Rachna International Institute of Research and Studies, Faridabad (MRIU) and (b) Indian Institute of
Technology Delhi (IITD) monitoring sites., Figure S2: (a—c) from left to right represents Quantile-Quantile (QQ)-
plots for measured PMio from merged SMPS-APS , merged SMPS-OPS, and un-calibrated Plantower PMS7003
sensor, respectively at Manav Rachna International Institute of Research and Studies, Faridabad (MRIU) and
(d,e) represents the QQ-plots for merged SMPS-OPS and un-calibrated PMS7003 from Indian Institute of
Technology Delhi (IITD), respectively., Figure S3: (a-d) Scatter plots for measured PMzsbetween (a) SMPS-OPS
and Atmos at Indian Institute of Technology Delhi (IITD) and Manav Rachna International Institute of
Research and Studies, Faridabad (MRIU) between, (b) SMPS-OPS and PMS 7003, (c¢) SMPS-APS and SMPS-
OPS, and (d) SMPS-APS and Atmos, respectively with their respective s and p-values, (e) pairwise correlation
and data distribution of measured PM2sbetween SMPS-OPS, SMPS-APS , and Atmos at MRIU site, and (f)
pairwise correlation and data distribution of SMPS-OPS and Atmos at IITD site. The grey area along the black
line represents the 95% confidence interval of regression. Numeric values in upper halves represent the
Spearman's coefficients., Figure S4: Time series of coarse particle PM2s.10 measured from merged SMPS-APS,
merged SMPS-OPS, and Atmos at (a) Manav Rachna International Institute of Research and Studies, Faridabad
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(MRIU), Faridabad during the whole study period and (b) for a small section of time series with common
collocated data points., and
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